Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 93(3): 032108, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27078293

ABSTRACT

The effective Hamiltonian formalism is extended to vectorial electromagnetic waves in order to describe statistical properties of the field in reverberation chambers. The latter are commonly used in electromagnetic compatibility tests. As a first step, the distribution of wave intensities in chaotic systems with varying opening in the weak coupling limit for scalar quantum waves is derived by means of random matrix theory. In this limit the only parameters are the modal overlap and the number of open channels. Using the extended effective Hamiltonian, we describe the intensity statistics of the vectorial electromagnetic eigenmodes of lossy reverberation chambers. Finally, the typical quantity of interest in such chambers, namely, the distribution of the electromagnetic response, is discussed. By determining the distribution of the phase rigidity, describing the coupling to the environment, using random matrix numerical data, we find good agreement between the theoretical prediction and numerical calculations of the response.

2.
Phys Rev Lett ; 113(22): 224101, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25494073

ABSTRACT

The change of resonance widths in an open system under a perturbation of its interior has been recently introduced by Fyodorov and Savin [Phys. Rev. Lett. 108, 184101 (2012)] as a sensitive indicator of the nonorthogonality of resonance states. We experimentally study universal statistics of this quantity in weakly open two-dimensional microwave cavities and reverberation chambers realizing scalar and electromagnetic vector fields, respectively. We consider global as well as local perturbations, and also extend the theory to treat the latter case. The influence of the perturbation type on the width shift distribution is more pronounced for many-channel systems. We compare the theory to experimental results for one and two attached antennas and to numerical simulations with higher channel numbers, observing a good agreement in all cases.

3.
Phys Rev Lett ; 111(17): 170405, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24206466

ABSTRACT

We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac oscillator to a corresponding tight-binding system. This tight-binding system is implemented as a microwave system by a chain of coupled dielectric disks, where the coupling is evanescent and can be adjusted appropriately. The resonances of the finite microwave system yield the spectrum of the one-dimensional Dirac oscillator with and without a mass term. The flexibility of the experimental setup allows the implementation of other one-dimensional Dirac-type equations.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 2): 047201, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22680605

ABSTRACT

Wave billiards which are chaotic in the geometrical limit are known to support nongeneric spatially localized modes called scar modes. The interaction of the scar modes with gain has been recently investigated in optics in microcavity lasers and vertical-cavity surface-emitting lasers. Exploiting the localization properties of scar modes in their wave-analogous phase-space representation, we report experimental results of scar mode selection by gain in a doped D-shaped optical fiber.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 035201, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19905165

ABSTRACT

We report noninvasive measurements of the complex field of elastic quasimodes of a silicon wafer with chaotic shape. The amplitude and phase spatial distribution of the flexural modes are directly obtained by Fourier transform of time measurements. We investigate the crossover from real mode to complex-valued quasimode, when absorption is progressively increased on one edge of the wafer. The complexness parameter, which characterizes the degree to which a resonance state is complex valued, is measured for nonoverlapping resonances, and is found to be proportional to the nonhomogeneous contribution to the line broadening of the resonance. A simple two-level model based on the effective Hamiltonian formalism supports our experimental results.


Subject(s)
Models, Chemical , Nonlinear Dynamics , Silicon/chemistry , Computer Simulation , Elastic Modulus
6.
Opt Lett ; 26(12): 872-4, 2001 Jun 15.
Article in English | MEDLINE | ID: mdl-18040476

ABSTRACT

Double-clad fibers with a doped single-mode core and a noncylindrical multimode chaotic cladding are shown to provide optimal pump-power absorption in power amplifiers. Based on the chaotic dynamics of rays in such fibers, we propose a quantitative theory for the pump-absorption ratio and favorably compare the predictions of the theory with numerical results obtained through an adapted beam-propagation scheme.

SELECTION OF CITATIONS
SEARCH DETAIL
...