Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Skin Res Technol ; 30(2): e13625, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38385865

ABSTRACT

INTRODUCTION: The application of artificial intelligence to facial aesthetics has been limited by the inability to discern facial zones of interest, as defined by complex facial musculature and underlying structures. Although semantic segmentation models (SSMs) could potentially overcome this limitation, existing facial SSMs distinguish only three to nine facial zones of interest. METHODS: We developed a new supervised SSM, trained on 669 high-resolution clinical-grade facial images; a subset of these images was used in an iterative process between facial aesthetics experts and manual annotators that defined and labeled 33 facial zones of interest. RESULTS: Because some zones overlap, some pixels are included in multiple zones, violating the one-to-one relationship between a given pixel and a specific class (zone) required for SSMs. The full facial zone model was therefore used to create three sub-models, each with completely non-overlapping zones, generating three outputs for each input image that can be treated as standalone models. For each facial zone, the output demonstrating the best Intersection Over Union (IOU) value was selected as the winning prediction. CONCLUSIONS: The new SSM demonstrates mean IOU values superior to manual annotation and landmark analyses, and it is more robust than landmark methods in handling variances in facial shape and structure.


Subject(s)
Artificial Intelligence , Semantics , Humans , Face/diagnostic imaging , Facial Muscles
2.
Neurooncol Adv ; 1(1): vdz011, 2019.
Article in English | MEDLINE | ID: mdl-31608329

ABSTRACT

BACKGROUND: We investigated prognostic models based on clinical, radiologic, and radiomic feature to preoperatively identify meningiomas at risk for poor outcomes. METHODS: Retrospective review was performed for 303 patients who underwent resection of 314 meningiomas (57% World Health Organization grade I, 35% grade II, and 8% grade III) at two independent institutions, which comprised primary and external datasets. For each patient in the primary dataset, 16 radiologic and 172 radiomic features were extracted from preoperative magnetic resonance images, and prognostic features for grade, local failure (LF) or overall survival (OS) were identified using the Kaplan-Meier method, log-rank tests and recursive partitioning analysis. Regressions and random forests were used to generate and test prognostic models, which were validated using the external dataset. RESULTS: Multivariate analysis revealed that apparent diffusion coefficient hypointensity (HR 5.56, 95% CI 2.01-16.7, P = .002) was associated with high grade meningioma, and low sphericity was associated both with increased LF (HR 2.0, 95% CI 1.1-3.5, P = .02) and worse OS (HR 2.94, 95% CI 1.47-5.56, P = .002). Both radiologic and radiomic predictors of adverse meningioma outcomes were significantly associated with molecular markers of aggressive meningioma biology, such as somatic mutation burden, DNA methylation status, and FOXM1 expression. Integrated prognostic models combining clinical, radiologic, and radiomic features demonstrated improved accuracy for meningioma grade, LF, and OS (area under the curve 0.78, 0.75, and 0.78, respectively) compared to models based on clinical features alone. CONCLUSIONS: Preoperative radiologic and radiomic features such as apparent diffusion coefficient and sphericity can predict tumor grade, LF, and OS in patients with meningioma.

SELECTION OF CITATIONS
SEARCH DETAIL
...