Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Front Mol Biosci ; 9: 989851, 2022.
Article in English | MEDLINE | ID: mdl-36148008

ABSTRACT

Although mutations in ADAMTS10 have long been known to cause autosomal recessive Weill-Marchesani Syndrome which is characterized by short stature and ocular abnormalities, more recent work has shown that certain mutations in ADAMTS10 cause glaucoma in dogs. In humans, glaucoma is the leading cause of irreversible vision loss that affects tens of millions of people world-wide. Vision loss in glaucoma is a result of neurodegeneration of retinal ganglion cells that form the inner-most layer of the retina and whose axons form the optic nerve which relays visual information to the brain. ADAMTS10 contributes to the formation of microfibrils which sequester latent transforming growth factor ß (TGFß). Among its many biological functions, TGFß promotes the development of retinal ganglion cells and is also known to play other roles in glaucoma pathogenesis. The aim of this study was to test the hypothesis that ADAMTS10 plays a role in retinal ganglion cell development through regulation of TGFß signaling. To this end, Adamts10 expression was targeted for reduction in zebrafish embryos carrying either a fluorescent reporter that labels retinal ganglion cells, or a fluorescent reporter of pSmad3-mediated TGFß family signaling. Loss of adamts10 function in zebrafish embryos reduced retinal ganglion cell reporter fluorescence and prevented formation of an ordered retinal ganglion cell layer. Targeting adamts10 expression also drastically reduced constitutive TGFß signaling in the eye. Direct inhibition of the TGFß receptor reduced retinal ganglion cell reporter fluorescence similar to the effect of targeting adamts10 expression. These findings unveil a previously unknown role for Adamts10 in retinal ganglion cell development and suggest that the developmental role of Adamts10 is mediated by active TGFß family signaling. In addition, our results show for the first time that Adamts10 is necessary for pSmad3-mediated constitutive TGFß family signaling.

2.
Genes (Basel) ; 13(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35885978

ABSTRACT

The human capacity to speak is fundamental to our advanced intellectual, technological and social development. Yet so very little is known regarding the evolutionary genetics of speech or its relationship with the broader aspects of evolutionary development in primates. In this study, we describe a large family with evolutionary retrograde development of the larynx and wrist. The family presented with severe speech impairment and incremental retrograde elongations of the pisiform in the wrist that limited wrist rotation from 180° to 90° as in primitive primates. To our surprise, we found that a previously unknown primate-specific gene TOSPEAK had been disrupted in the family. TOSPEAK emerged de novo in an ancestor of extant primates across a 540 kb region of the genome with a pre-existing highly conserved long-range laryngeal enhancer for a neighbouring bone morphogenetic protein gene GDF6. We used transgenic mouse modelling to identify two additional GDF6 long-range enhancers within TOSPEAK that regulate GDF6 expression in the wrist. Disruption of TOSPEAK in the affected family blocked the transcription of TOSPEAK across the 3 GDF6 enhancers in association with a reduction in GDF6 expression and retrograde development of the larynx and wrist. Furthermore, we describe how TOSPEAK developed a human-specific promoter through the expansion of a penta-nucleotide direct repeat that first emerged de novo in the promoter of TOSPEAK in gibbon. This repeat subsequently expanded incrementally in higher hominids to form an overlapping series of Sp1/KLF transcription factor consensus binding sites in human that correlated with incremental increases in the promoter strength of TOSPEAK with human having the strongest promoter. Our research indicates a dual evolutionary role for the incremental increases in TOSPEAK transcriptional interference of GDF6 enhancers in the incremental evolutionary development of the wrist and larynx in hominids and the human capacity to speak and their retrogression with the reduction of TOSPEAK transcription in the affected family.


Subject(s)
Growth Differentiation Factor 6 , Speech , Animals , Biological Evolution , Growth Differentiation Factor 6/genetics , Growth Differentiation Factor 6/metabolism , Humans , Mice , Primates/genetics , Regulatory Sequences, Nucleic Acid
3.
Invest Ophthalmol Vis Sci ; 62(10): 26, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34424262

ABSTRACT

Purpose: Previously, we identified a G661R mutation of ADAMTS10 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif 10) as being disease causative in a colony of Beagles with inherited primary open-angle glaucoma (POAG). Mutations in ADAMTS10 are known to cause Weill-Marchesani syndrome (WMS), which is also caused by mutations in the fibrillin-1 gene (FBN1), suggesting functional linkage between ADAMTS10 and fibrillin-1, the principal component of microfibrils. Here, we established a mouse line with the G661R mutation of Adamts10 (Adamts10G661R/G661R) to determine if they develop features of WMS and alterations of ocular fibrillin microfibrils. Methods: Intraocular pressure (IOP) was measured using a TonoLab rebound tonometer. Central cornea thickness (CCT), anterior chamber depth (ACD) and axial length (AL) of the eye were examined by spectral-domain optical coherence tomography. Sagittal eye sections from mice at postnatal day 10 (P10) and at 3 and 24 months of age were stained with antibodies against fibrillin-1, fibrillin-2, and ADAMTS10. Results: IOP was not elevated in Adamts10G661R/G661R mice. Adamts10G661R/G661R mice had smaller bodies, thicker CCT, and shallower ACD compared to wild-type mice but normal AL. Adamts10G661R/G661R mice displayed persistent fibrillin-2 and enhanced fibrillin-1 immunofluorescence in the lens zonules and in the hyaloid vasculature and its remnants in the vitreous. Conclusions: Adamts10G661R/G661R mice recapitulate the short stature and ocular phenotypes of WMS. The altered fibrillin-1 and fibrillin-2 immunoactivity in Adamts10G661R/G661R mice suggests that the G661R mutation of Adamts10 perturbs regulation of the fibrillin isotype composition of microfibrils in the mouse eye.


Subject(s)
ADAMTS Proteins/genetics , Anterior Chamber/metabolism , DNA/genetics , Fibrillins/metabolism , Glaucoma, Open-Angle/genetics , Microfibrils/metabolism , Mutation , ADAMTS Proteins/metabolism , Animals , DNA Mutational Analysis , Disease Models, Animal , Female , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/physiopathology , Male , Mice , Signal Transduction
4.
J Comp Neurol ; 528(14): 2445-2470, 2020 10.
Article in English | MEDLINE | ID: mdl-32170734

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is an incretin hormone with a number of functions to maintain energy homeostasis and contribute to motivated behavior, both peripherally and within the central nervous system (CNS). These functions, which include insulin secretion, gastric emptying, satiety, and the hedonic aspects of food and drug intake, are primarily mediated through stimulation of the GLP-1 receptor. While this receptor plays an important role in a variety of physiological outcomes, data regarding its CNS expression has been primarily limited to regional receptor binding and single-label transcript expression studies. We thus developed a bacterial artificial chromosome transgenic mouse, in which expression of a red fluorescent protein (mApple) is driven by the GLP-1R promoter. Using this reporter mouse, we characterized the regional and cellular expression patterns of GLP-1R expressing cells in the CNS, using double-label immunohistochemistry and in situ hybridization. GLP-1R-expressing cells were enriched in several key brain regions and circuits, including the lateral septum, hypothalamus, amygdala, bed nucleus of the stria terminalis, hippocampus, ventral midbrain, periaqueductal gray, and cerebral cortex. In most regions, GLP-1R primarily colocalized with GABAergic neurons, except within some regions such as the hippocampus, where it was co-expressed in glutamatergic neurons. GLP-1R-mApple cells were highly co-expressed with 5-HT3 receptor-containing neurons within the cortex and striatum, as well as with dopamine receptor- and calbindin-expressing cells within the lateral septum, the brain region in which GLP-1R is most highly expressed. In this manuscript, we provide detailed images of GLP-1R-mApple expression and distribution within the brain and characterization of these neurons.


Subject(s)
Brain/metabolism , Glucagon-Like Peptide 1/metabolism , Neurons/metabolism , Animals , Mice , Mice, Transgenic , Models, Animal , Transcriptome
5.
Genesis ; 58(5): e23357, 2020 05.
Article in English | MEDLINE | ID: mdl-32078250

ABSTRACT

Cystinuria Type A is a relatively common genetic kidney disease occurring in 1 in 7,000 people worldwide that results from mutation of the cystine transporter rBAT encoded by Slc3a1. We used CRISPR/Cas9 technology to engineer cystinuria Type A mice via genome editing of the C57BL/6NHsd background. These mice are an improvement on currently available models as they are on a coisogenic genetic background and have a single defined mutation. In order to use albinism to track Cas9 activity, we co-injected gRNAs targeting Slc3a1 and tyrosinase (Tyr) with Cas9 expressing plasmid DNA into mouse embryos. Two different Slc3a1 mutational alleles were derived, with homozygous mice of both demonstrating elevated urinary cystine levels, cystine crystals, and bladder stones. We used whole genome sequencing to evaluate for potential off-target editing. No off-target indels were observed for the top 10 predicted off-targets for Slc3a1 or Tyr. Therefore, we used CRISPR/Cas9 to generate coisogenic albino cystinuria Type A mice that could be used for in vivo imaging, further study, or developing new treatments of cystinuria.


Subject(s)
Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Neutral/genetics , Cystinuria/genetics , Mutation , Animals , CRISPR-Cas Systems , Cysteine/urine , Cystinuria/pathology , Disease Models, Animal , Mice , Mice, Inbred C57BL
6.
Sci Signal ; 12(569)2019 02 19.
Article in English | MEDLINE | ID: mdl-30783011

ABSTRACT

G protein-coupled receptors (GPCRs) that couple to Gi/o proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gßγ subunits from activated G proteins decreases the activity of voltage-gated Ca2+ channels (VGCCs), decreasing excitability. A less understood Gßγ-mediated mechanism downstream of Ca2+ entry is the binding of Gßγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABAB receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT1b receptors and adrenergic α2a receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by Gi/o-coupled GPCRs through the Gßγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.


Subject(s)
GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Receptors, G-Protein-Coupled/metabolism , Synaptosomal-Associated Protein 25/metabolism , Animals , Calcium , Exocytosis/physiology , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Neural Inhibition/physiology , Phenotype , Protein Binding , Synaptic Transmission/physiology , Synaptosomal-Associated Protein 25/genetics
7.
Am J Hum Genet ; 101(2): 167-176, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28777929

ABSTRACT

With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input.


Subject(s)
Gene Editing , Genome, Human/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing/ethics , Gene Editing/legislation & jurisprudence , Gene Editing/methods , Humans , Social Change
8.
Cell Rep ; 19(6): 1257-1267, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28494873

ABSTRACT

EGF receptor (EGFR) is a critical signaling node throughout life. However, it has not been possible to directly visualize endogenous Egfr in mice. Using CRISPR/Cas9 genome editing, we appended a fluorescent reporter to the C terminus of the Egfr. Homozygous reporter mice appear normal and EGFR signaling is intact in vitro and in vivo. We detect distinct patterns of Egfr expression in progenitor and differentiated compartments in embryonic and adult mice. Systemic delivery of EGF or amphiregulin results in markedly different patterns of Egfr internalization and trafficking in hepatocytes. In the normal intestine, Egfr localizes to the crypt rather than villus compartment, expression is higher in adjacent epithelium than in intestinal tumors, and following colonic injury expression appears in distinct cell populations in the stroma. This reporter, under control of its endogenous regulatory elements, enables in vivo monitoring of the dynamics of Egfr localization and trafficking in normal and disease states.


Subject(s)
ErbB Receptors/genetics , Genes, Reporter , Transgenes , Adult Stem Cells/metabolism , Amphiregulin/metabolism , Animals , Embryo, Mammalian/metabolism , ErbB Receptors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hepatocytes/metabolism , Intestinal Mucosa/embryology , Intestinal Mucosa/metabolism , Mice , Microscopy, Fluorescence/methods , Protein Transport , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
9.
J Neurosci ; 37(8): 2216-2233, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28130356

ABSTRACT

Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes.SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD.


Subject(s)
Autism Spectrum Disorder , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Dendrites/metabolism , Mutation/genetics , Synaptic Transmission/genetics , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/physiopathology , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Cells, Cultured , Cycloheximide/pharmacology , Disease Models, Animal , Embryo, Mammalian , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Exploratory Behavior/physiology , Female , Gene Expression Regulation/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Rats, Sprague-Dawley , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Sialoglycoproteins/genetics , Sialoglycoproteins/metabolism
10.
Stem Cells ; 34(9): 2342-53, 2016 09.
Article in English | MEDLINE | ID: mdl-27250101

ABSTRACT

Fracture nonunion is a major complication of bone fracture regeneration and repair. The molecular mechanisms that result in fracture nonunion appearance are not fully determined. We hypothesized that fracture nonunion results from the failure of hypoxia and hematoma, the primary signals in response to bone injury, to trigger Bmp2 expression by mesenchymal progenitor cells (MSCs). Using a model of nonstabilized fracture healing in transgenic 5'Bmp2BAC mice we determined that Bmp2 expression appears in close association with hypoxic tissue and hematoma during the early phases of fracture healing. In addition, BMP2 expression is induced when human periosteum explants are exposed to hypoxia ex vivo. Transient interference of hypoxia signaling in vivo with PX-12, a thioredoxin inhibitor, results in reduced Bmp2 expression, impaired fracture callus formation and atrophic-like nonunion by a HIF-1α independent mechanism. In isolated human periosteum-derived MSCs, BMP2 expression could be induced with the addition of platelets concentrate lysate but not with hypoxia treatment, confirming HIF-1α-independent BMP2 expression. Interestingly, in isolated human periosteum-derived mesenchymal progenitor cells, inhibition of BMP2 expression by PX-12 is accomplished only under hypoxic conditions seemingly through dis-regulation of reactive oxygen species (ROS) levels. In conclusion, we provide evidence of a molecular mechanism of hypoxia-dependent BMP2 expression in MSCs where interference with ROS homeostasis specifies fracture nonunion-like appearance in vivo through inhibition of Bmp2 expression. Stem Cells 2016;34:2342-2353.


Subject(s)
Fractures, Ununited/metabolism , Fractures, Ununited/pathology , Homeostasis , Mesenchymal Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Animals , Bone Morphogenetic Protein 2/metabolism , Cell Hypoxia/drug effects , Cell Separation , Disulfides/pharmacology , Fracture Healing/drug effects , Homeostasis/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Imidazoles/pharmacology , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Osteogenesis/drug effects , Oxidative Stress/drug effects , Periosteum/pathology
11.
J Bone Miner Res ; 30(1): 64-70, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25043193

ABSTRACT

Transcription of BMPs and their antagonists in precise spatiotemporal patterns is essential for proper skeletal development, maturation, maintenance, and repair. Nevertheless, transcriptional activity of these molecules in skeletal tissues beyond embryogenesis has not been well characterized. In this study, we used several transgenic reporter mouse lines to define the transcriptional activity of two potent BMP ligands, Bmp2 and Bmp4, and their antagonist, Noggin, in the postnatal skeleton. At 3 to 4 weeks of age, Bmp4 and Noggin reporter activity was readily apparent in most cells of the osteogenic or chondrogenic lineages, respectively, whereas Bmp2 reporter activity was strongest in terminally differentiated cells of both lineages. By 5 to 6 months, activity of the reporters had generally abated; however, the Noggin and Bmp2 reporters remained remarkably active in articular chondrocytes and persisted there indefinitely. We further found that endogenous Bmp2, Bmp4, and Noggin transcript levels in postnatal bone and cartilage mirrored the activity of their respective reporters in these tissues. Finally, we found that the activity of the Bmp2, Bmp4, and Noggin reporters in bone and cartilage at 3 to 4 weeks could be recapitulated in both osteogenic and chondrogenic culture models. These results reveal that Bmp2, Bmp4, and Noggin transcription persists to varying degrees in skeletal tissues postnatally, with each gene exhibiting its own cell type-specific pattern of activity. Illuminating these patterns and their dynamics will guide future studies aimed at elucidating both the causes and consequences of aberrant BMP signaling in the postnatal skeleton.


Subject(s)
Bone Development/physiology , Bone Morphogenetic Protein 2/biosynthesis , Bone Morphogenetic Protein 4/biosynthesis , Bone and Bones/metabolism , Carrier Proteins/biosynthesis , Cartilage/growth & development , Transcription, Genetic/physiology , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 4/genetics , Bone and Bones/cytology , Carrier Proteins/genetics , Cartilage/cytology , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Male , Mice , Mice, Transgenic , Osteocytes/cytology , Osteocytes/metabolism , Signal Transduction/physiology
12.
Arterioscler Thromb Vasc Biol ; 34(11): 2387-93, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25189570

ABSTRACT

Calcific aortic valve disease (CAVD) is increasingly prevalent worldwide with significant morbidity and mortality. Therapeutic options beyond surgical valve replacement are currently limited. In 2011, the National Heart Lung and Blood Institute assembled a working group on aortic stenosis. This group identified CAVD as an actively regulated disease process in need of further study. As a result, the Alliance of Investigators on CAVD was formed to coordinate and promote CAVD research, with the goals of identifying individuals at risk, developing new therapeutic approaches, and improving diagnostic methods. The group is composed of cardiologists, geneticists, imaging specialists, and basic science researchers. This report reviews the current status of CAVD research and treatment strategies with identification of areas in need of additional investigation for optimal management of this patient population.


Subject(s)
Aortic Valve Stenosis/therapy , Aortic Valve/pathology , Biomedical Research/trends , Calcinosis/therapy , Heart Defects, Congenital/therapy , Heart Valve Diseases/therapy , Aortic Valve/physiopathology , Aortic Valve Stenosis/diagnosis , Aortic Valve Stenosis/physiopathology , Bicuspid Aortic Valve Disease , Calcinosis/diagnosis , Calcinosis/physiopathology , Cardiac Surgical Procedures , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/physiopathology , Heart Valve Diseases/diagnosis , Heart Valve Diseases/physiopathology , Heart Valve Prosthesis Implantation , Hemodynamics/physiology , Humans , Signal Transduction/physiology
13.
J Orthop Res ; 32(1): 17-23, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24018651

ABSTRACT

The relationship between BMP2 expression and the recruitment of skeletogenic stem cells was assessed following bone marrow reaming. BMP2 expression was examined using transgenic mice in which ß-galactosidase had been inserted into the coding region of BMP2. Stem cell mobilization was analyzed by FACS analysis using CD73, a marker associated with bone marrow stromal stem cells. BMP2 expression was induced in endosteal lining cells, cortical osteocytes and periosteal cells in both the reamed and in contralateral bones. BMP2 mRNA expression in the reamed bone showed an early peak within the first 24 h of reaming followed by a later peak at 7 days, while contralateral bones only showed the 7 days peak of expression. FACS analysis sorting on CD73 positive cells showed a 50% increase of these cells at 3 and 14 days in the marrow of the injured bone and a single peak at 14 days of the marrow cell population of the contralateral bone. A ∼20% increase of CD73 positive cells was seen in the peripheral blood 2 days after reaming. These data showed that traumatic bone injury caused a systemic induction of BMP2 expression and that this increase is correlated with the mobilization of CD73 positive cells.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Hematopoietic Stem Cell Mobilization , Osteogenesis/physiology , Tibia/injuries , Tibia/physiology , 5'-Nucleotidase/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Bone Morphogenetic Protein 2/metabolism , Cells, Cultured , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Disease Models, Animal , Flow Cytometry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism , Tibia/cytology
14.
PLoS Genet ; 9(11): e1003929, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24244193

ABSTRACT

Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage.


Subject(s)
DNA Replication/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial , Mutation/genetics , Base Sequence , Humans , Mitochondria/genetics , Muscle, Skeletal/metabolism , Organ Specificity , Polymorphism, Restriction Fragment Length/genetics
15.
Development ; 140(22): 4574-82, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24154528

ABSTRACT

Development of the musculoskeletal system requires precise integration of muscles, tendons and bones. The molecular mechanisms involved in the differentiation of each of these tissues have been the focus of significant research; however, much less is known about how these tissues are integrated into a functional unit appropriate for each body position and role. Previous reports have demonstrated crucial roles for Hox genes in patterning the axial and limb skeleton. Loss of Hox11 paralogous gene function results in dramatic malformation of limb zeugopod skeletal elements, the radius/ulna and tibia/fibula, as well as transformation of the sacral region to a lumbar phenotype. Utilizing a Hoxa11eGFP knock-in allele, we show that Hox11 genes are expressed in the connective tissue fibroblasts of the outer perichondrium, tendons and muscle connective tissue of the zeugopod region throughout all stages of development. Hox11 genes are not expressed in differentiated cartilage or bone, or in vascular or muscle cells in these regions. Loss of Hox11 genes disrupts regional muscle and tendon patterning of the limb in addition to affecting skeletal patterning. The tendon and muscle defects in Hox11 mutants are independent of skeletal patterning events as disruption of tendon and muscle patterning is observed in Hox11 compound mutants that do not have a skeletal phenotype. Thus, Hox genes are not simply regulators of skeletal morphology as previously thought, but are key factors that regulate regional patterning and integration of the musculoskeletal system.


Subject(s)
Body Patterning/genetics , Bone and Bones/embryology , Homeodomain Proteins/genetics , Muscles/embryology , Tendons/embryology , Animals , Bone and Bones/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Connective Tissue/embryology , Connective Tissue/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Female , Forelimb/embryology , Forelimb/metabolism , Forelimb/ultrastructure , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/metabolism , Male , Mice , Mice, Mutant Strains , Muscles/metabolism , Mutation/genetics , Osteoblasts/cytology , Osteoblasts/metabolism , Tendons/metabolism
16.
Bone ; 53(1): 239-47, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23219944

ABSTRACT

Juvenile ischemic osteonecrosis of the femoral head (IOFH) is one of the most serious hip conditions causing the femoral head deformity. Little is known about BMP signaling following ischemic osteonecrosis. In this study, we found acute BMP2 upregulation in the femoral head cartilage 24h after ischemic induction using our immature pig IOFH model. Similarly, in our ischemic osteonecrosis mouse model, BMP2 expression and BMP signaling were enhanced in the articular cartilage surrounding the necrotic bone. BMP2 was increased in cartilage explants and primary chondrocytes under hypoxia (1% O(2)) compared with normoxia (21% O(2)). Addition of the hypoxia inducible factor 1 (HIF1) activator DFO significantly increased BMP2 while HIF1 silencing (siHIF1) only partially reduced BMP2, suggesting other mechanisms of BMP2 upregulation being present. Hypoxia is known to induce the production of free oxygen radicals, which are converted to hydrogen peroxide (H(2)O(2)) by superoxide dismutase 2 (SOD2). As an alternative mechanism, we investigated the effect of H(2)O(2)/SOD2 production on BMP2 upregulation. Chondrocytes produced more H(2)O(2) under hypoxia than normoxia. H(2)O(2) addition to the chondrocyte culture also significantly increased BMP2 expression. SOD2 was also dramatically increased in the ischemic pig cartilage at 24h following surgery and in primary chondrocytes/cartilage explants culture under hypoxia. SOD2 protein addition to the chondrocyte culture significantly increased BMP2. Moreover, DFO significantly increased SOD2 while HIF1 silencing only partially reduced SOD2. These results suggest that the acute BMP2 response of chondrocytes to ischemic osteonecrosis is more dominantly through the H(2)O(2) production and only partly through the HIF1 pathway.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Legg-Calve-Perthes Disease/metabolism , Up-Regulation , Animals , Bone Morphogenetic Proteins/genetics , Cells, Cultured , Disease Models, Animal , Humans , Hydrogen Peroxide/pharmacology , Mice , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Superoxide Dismutase/metabolism , Swine , Up-Regulation/drug effects
17.
PLoS One ; 7(5): e36789, 2012.
Article in English | MEDLINE | ID: mdl-22693558

ABSTRACT

Growth Differentiation Factor-6 (Gdf6) is a member of the Bone Morphogenetic Protein (BMP) family of secreted signaling molecules. Previous studies have shown that Gdf6 plays a role in formation of a diverse subset of skeletal joints. In mice, loss of Gdf6 results in fusion of the coronal suture, the intramembranous joint that separates the frontal and parietal bones. Although the role of GDFs in the development of cartilaginous limb joints has been studied, limb joints are developmentally quite distinct from cranial sutures and how Gdf6 controls suture formation has remained unclear. In this study we show that coronal suture fusion in the Gdf6-/- mouse is due to accelerated differentiation of suture mesenchyme, prior to the onset of calvarial ossification. Gdf6 is expressed in the mouse frontal bone primordia from embryonic day (E) 10.5 through 12.5. In the Gdf6-/- embryo, the coronal suture fuses prematurely and concurrently with the initiation of osteogenesis in the cranial bones. Alkaline phosphatase (ALP) activity and Runx2 expression assays both showed that the suture width is reduced in Gdf6+/- embryos and is completely absent in Gdf6-/- embryos by E12.5. ALP activity is also increased in the suture mesenchyme of Gdf6+/- embryos compared to wild-type. This suggests Gdf6 delays differentiation of the mesenchyme occupying the suture, prior to the onset of ossification. Therefore, although BMPs are known to promote bone formation, Gdf6 plays an inhibitory role to prevent the osteogenic differentiation of the coronal suture mesenchyme.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cell Differentiation , Cranial Sutures/embryology , Growth Differentiation Factor 6/metabolism , Mesoderm/cytology , Mesoderm/metabolism , Animals , Cell Proliferation , Cell Survival , Cranial Sutures/cytology , Cranial Sutures/metabolism , Frontal Bone/cytology , Frontal Bone/embryology , Frontal Bone/metabolism , Gene Expression Regulation, Developmental , Growth Differentiation Factor 6/deficiency , Ligands , Mice , Mice, Inbred C57BL , Osteogenesis , Time Factors
18.
Mol Cell Biol ; 32(12): 2312-22, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22493062

ABSTRACT

During renal development, the proper emergence of the ureteric bud (UB) from the Wolffian duct is essential for formation of the urinary system. Previously, we showed that expression of transcription factor GATA-2 in the urogenital primordium was demarcated anteroposteriorly into two domains that were regulated by separate enhancers. While GATA-2 expression in the caudal urogenital mesenchyme is controlled by the UG4 enhancer, its more-rostral expression is regulated by UG2. We found that anteriorly displaced budding led to obstructed megaureters in Gata2 hypomorphic mutant mice, possibly due to reduced expression of the downstream effector bone morphogenetic protein 4 (BMP4). Here, we report that UG4-driven, but not UG2-driven, GATA-2 expression in the urogenital mesenchyme significantly reverts the uropathy observed in the Gata2 hypomorphic mutant mice. Furthermore, the data show that transgenic rescue by GATA-2 reverses the rostral outgrowth of the UB. We also provide evidence for a GATA-2-BMP4 epistatic relationship by demonstrating that reporter gene expression from a Bmp4 bacterial artificial chromosome (BAC) transgene is altered in Gata2 hypomorphs; furthermore, UG4-directed BMP4 expression in the mutants leads to reduced incidence of megaureters. These results demonstrate that GATA-2 expression in the caudal urogenital mesenchyme as directed by the UG4 enhancer is crucial for proper development of the urinary tract and that its regulation of BMP4 expression is a critical aspect of this function.


Subject(s)
Bone Morphogenetic Protein 4 , Enhancer Elements, Genetic , GATA2 Transcription Factor/genetics , Gene Expression Regulation, Developmental , Urogenital System , Animals , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , GATA2 Transcription Factor/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Mice , Mutation , Urogenital Abnormalities , Urogenital System/embryology , Urogenital System/metabolism , Vesico-Ureteral Reflux/etiology , Vesico-Ureteral Reflux/genetics
19.
Bone ; 51(1): 168-80, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22391215

ABSTRACT

Prior studies showed that bone regeneration during distraction osteogenesis (DO) was dependent on vascular tissue development and that inhibition of VEGFR signaling diminished the expression of BMP2. A combination of micro-computed tomography (µCT) analysis of vascular and skeletal tissues, immunohistological and histological analysis of transgenic mice containing a BAC transgene in which ß-galactosidase had been inserted into the coding region of BMP2 and qRT-PCR analysis, was used to examine how the spatial temporal expression of the morphogenetic signals that drive skeletal and vascular tissue development is coordinated during DO. These results showed that BMP2 expression was induced in smooth muscle and vascular endothelial cells of arteries and veins, capillary endothelial cells, hypertrophic chondrocytes and osteocytes. BMP2 was not expressed by lymphatic vessels or macrophages. Separate peaks of BMP2 mRNA expression were induced in the surrounding muscular tissues and the distraction gap and corresponded first with large vessel collateralization and arteriole remodeling followed by periods of angiogenesis in the gap region. Immunohistological and qRT-PCR analysis of VEGF receptors and ligands showed that mesenchymal cells, lining cells and chondrocytes, expressed VEGFA, although PlGF expression was only seen in mesenchymal cells within the gap region. On the other hand VEGFR2 appeared to be predominantly expressed by vascular endothelial and hematopoietic cells. These results suggest that bone and vascular tissue formation is coordinated via a mutually supporting set of paracrine loops in which blood vessels primarily synthesize the morphogens that promote bone formation while mesenchymal cells primarily synthesize the morphogens that promote vascular tissue formation.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Osteogenesis, Distraction , Osteogenesis/physiology , Animals , Bone Morphogenetic Protein 2/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Male , Mice , Mice, Transgenic , Osteogenesis/genetics , Placenta Growth Factor , Pregnancy Proteins/genetics , Pregnancy Proteins/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
20.
Curr Protoc Hum Genet ; Chapter 1: Unit1.10, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22241655

ABSTRACT

The recent success of genome-wide association studies has generated a trove of biologically significant variants implicated in human disease. However, many, if not most, of these variants fall in noncoding regions that have traditionally lacked much functional annotation. New data sets and tools allow for a more detailed assessment of potential importance of noncoding genetic variants. An overview of types of regulatory annotation that are currently available, and approaches to analyzing this data are provided with emphasis on usage of the UCSC genome browser.


Subject(s)
DNA, Intergenic , Genomics , Molecular Sequence Annotation , Databases, Genetic , Genomics/methods , Humans , Internet , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...