Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 291(2018): 20232823, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38444339

ABSTRACT

Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.


Subject(s)
Chiroptera , Humans , Animals , Livestock
2.
Sci Rep ; 13(1): 15829, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739999

ABSTRACT

Novel coronavirus species of public health and veterinary importance have emerged in the first two decades of the twenty-first century, with bats identified as natural hosts for progenitors of many coronaviruses. Targeted wildlife surveillance is needed to identify the factors involved in viral perpetuation within natural host populations, and drivers of interspecies transmission. We monitored a natural colony of Egyptian rousette bats at monthly intervals across two years to identify circulating coronaviruses, and to investigate shedding dynamics and viral maintenance within the colony. Three distinct lineages were detected, with different seasonal temporal excretion dynamics. For two lineages, the highest periods of coronavirus shedding were at the start of the year, when large numbers of bats were found in the colony. Highest peaks for a third lineage were observed towards the middle of the year. Among individual bat-level factors (age, sex, reproductive status, and forearm mass index), only reproductive status showed significant effects on excretion probability, with reproductive adults having lower rates of detection, though factors were highly interdependent. Analysis of recaptured bats suggests that viral clearance may occur within one month. These findings may be implemented in the development of risk reduction strategies for potential zoonotic coronavirus transmission.


Subject(s)
Body Fluids , COVID-19 , Chiroptera , Animals , Animals, Wild
3.
Viruses ; 15(4)2023 04 17.
Article in English | MEDLINE | ID: mdl-37112966

ABSTRACT

Recent studies have indicated that bats are hosts to diverse filoviruses. Currently, no pan-filovirus molecular assays are available that have been evaluated for the detection of all mammalian filoviruses. In this study, a two-step pan-filovirus SYBR Green real-time PCR assay targeting the nucleoprotein gene was developed for filovirus surveillance in bats. Synthetic constructs were designed as representatives of nine filovirus species and used to evaluate the assay. This assay detected all synthetic constructs included with an analytical sensitivity of 3-31.7 copies/reaction and was evaluated against the field collected samples. The assay's performance was similar to a previously published probe based assay for detecting Ebola- and Marburgvirus. The developed pan-filovirus SYBR Green assay will allow for more affordable and sensitive detection of mammalian filoviruses in bat samples.


Subject(s)
Biosurveillance , Chiroptera , Ebolavirus , Filoviridae , Hemorrhagic Fever, Ebola , Animals , Filoviridae/genetics , Ebolavirus/genetics , Mammals
4.
Sci Rep ; 11(1): 24262, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930962

ABSTRACT

Bat-borne viruses in the Henipavirus genus have been associated with zoonotic diseases of high morbidity and mortality in Asia and Australia. In Africa, the Egyptian rousette bat species (Rousettus aegyptiacus) is an important viral host in which Henipavirus-related viral sequences have previously been identified. We expanded these findings by assessing the viral dynamics in a southern African bat population. A longitudinal study of henipavirus diversity and excretion dynamics identified 18 putative viral species circulating in a local population, three with differing seasonal dynamics, and the winter and spring periods posing a higher risk of virus spillover and transmission. The annual peaks in virus excretion are most likely driven by subadults and may be linked to the waning of maternal immunity and recolonization of the roost in early spring. These results provide insightful information into the bat-host relationship that can be extrapolated to other populations across Africa and be communicated to at-risk communities as a part of evidence-based public health education and prevention measures against pathogen spillover threats.


Subject(s)
Chiroptera/virology , Disease Reservoirs/virology , Marburgvirus/immunology , Paramyxoviridae/immunology , Seasons , Africa , Animals , Asia , Australia , Geography , Henipavirus , Humans , Longitudinal Studies , South Africa , Time Factors , Zoonoses/epidemiology , Zoonoses/virology
5.
Viruses ; 13(5)2021 05 18.
Article in English | MEDLINE | ID: mdl-34070175

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has had devastating health and socio-economic impacts. Human activities, especially at the wildlife interphase, are at the core of forces driving the emergence of new viral agents. Global surveillance activities have identified bats as the natural hosts of diverse coronaviruses, with other domestic and wildlife animal species possibly acting as intermediate or spillover hosts. The African continent is confronted by several factors that challenge prevention and response to novel disease emergences, such as high species diversity, inadequate health systems, and drastic social and ecosystem changes. We reviewed published animal coronavirus surveillance studies conducted in Africa, specifically summarizing surveillance approaches, species numbers tested, and findings. Far more surveillance has been initiated among bat populations than other wildlife and domestic animals, with nearly 26,000 bat individuals tested. Though coronaviruses have been identified from approximately 7% of the total bats tested, surveillance among other animals identified coronaviruses in less than 1%. In addition to a large undescribed diversity, sequences related to four of the seven human coronaviruses have been reported from African bats. The review highlights research gaps and the disparity in surveillance efforts between different animal groups (particularly potential spillover hosts) and concludes with proposed strategies for improved future biosurveillance.


Subject(s)
Coronavirus Infections/epidemiology , Epidemiological Monitoring/veterinary , Africa/epidemiology , Animals , Animals, Wild/virology , COVID-19/epidemiology , Chiroptera/virology , Coronaviridae/genetics , Coronavirus/pathogenicity , Ecosystem , Genetic Variation , Genome, Viral , Pandemics , Phylogeny , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
6.
Trop Med Infect Dis ; 4(3)2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31269631

ABSTRACT

A high diversity of corona- and paramyxoviruses have been detected in different bat species at study sites worldwide, including Africa, however no biosurveillance studies from Rwanda have been reported. In this study, samples from bats collected from caves in Ruhengeri, Rwanda, were tested for the presence of corona- and paramyxoviral RNA using reverse transcription PCR assays. Positive results were further characterized by DNA sequencing and phylogenetic analysis. In addition to morphological identification of bat species, we also did molecular confirmation of species identities, contributing to the known genetic database available for African bat species. We detected a novel Betacoronavirus in two Geoffroy's horseshoe bats (Rhinolophus clivosus) bats. We also detected several different paramyxoviral species from various insectivorous bats. One of these viral species was found to be homologous to the genomes of viruses belonging to the Jeilongvirus genus. Additionally, a Henipavirus-related sequence was detected in an Egyptian rousette fruit bat (Rousettus aegyptiacus). These results expand on the known diversity of corona- and paramyxoviruses and their geographical distribution in Africa.

7.
Viruses ; 11(1)2019 01 08.
Article in English | MEDLINE | ID: mdl-30626055

ABSTRACT

The Egyptian rousette bat (Rousettus aegyptiacus) has previously been implicated as the natural host of a zoonotic rubulavirus; however, its association with rubulaviruses has been studied to a limited extent. Urine, spleen, and other organs collected from the R. aegyptiacus population within South Africa were tested with a hemi-nested RT-PCR assay targeting a partial polymerase gene region of viruses from the Avula- and Rubulavirus genera. Urine was collected over a 14-month period to study the temporal dynamics of viral excretion. Diverse rubulaviruses, including viruses related to human mumps and parainfluenza virus 2, were detected. Active excretion was identified during two peak periods coinciding with the host reproductive cycle. Analysis of additional organs indicated co-infection of individual bats with a number of different putative rubulaviruses, highlighting the limitations of using a single sample type when determining viral presence and diversity. Our findings suggest that R. aegyptiacus can harbor a range of Rubula- and related viruses, some of which are related to known human pathogens. The observed peaks in viral excretion represents potential periods of a higher risk of virus transmission and zoonotic disease spill-over.


Subject(s)
Avulavirus/isolation & purification , Chiroptera/virology , Rubulavirus/isolation & purification , Urine/virology , Animals , Avulavirus/physiology , Avulavirus Infections/transmission , Avulavirus Infections/veterinary , Chiroptera/urine , Disease Reservoirs/virology , Egypt , Longitudinal Studies , Phylogeny , Polymerase Chain Reaction , RNA, Viral/genetics , Rubulavirus/physiology , Rubulavirus Infections/transmission , Rubulavirus Infections/veterinary , South Africa , Spleen/virology
8.
PLoS One ; 13(3): e0194527, 2018.
Article in English | MEDLINE | ID: mdl-29579103

ABSTRACT

Species within the Neoromicia bat genus are abundant and widely distributed in Africa. It is common for these insectivorous bats to roost in anthropogenic structures in urban regions. Additionally, Neoromicia capensis have previously been identified as potential hosts for Middle East respiratory syndrome (MERS)-related coronaviruses. This study aimed to ascertain the gastrointestinal virome of these bats, as viruses excreted in fecal material or which may be replicating in rectal or intestinal tissues have the greatest opportunities of coming into contact with other hosts. Samples were collected in five regions of South Africa over eight years. Initial virome composition was determined by viral metagenomic sequencing by pooling samples and enriching for viral particles. Libraries were sequenced on the Illumina MiSeq and NextSeq500 platforms, producing a combined 37 million reads. Bioinformatics analysis of the high throughput sequencing data detected the full genome of a novel species of the Circoviridae family, and also identified sequence data from the Adenoviridae, Coronaviridae, Herpesviridae, Parvoviridae, Papillomaviridae, Phenuiviridae, and Picornaviridae families. Metagenomic sequencing data was insufficient to determine the viral diversity of certain families due to the fragmented coverage of genomes and lack of suitable sequencing depth, as some viruses were detected from the analysis of reads-data only. Follow up conventional PCR assays targeting conserved gene regions for the Adenoviridae, Coronaviridae, and Herpesviridae families were used to confirm metagenomic data and generate additional sequences to determine genetic diversity. The complete coding genome of a MERS-related coronavirus was recovered with additional amplicon sequencing on the MiSeq platform. The new genome shared 97.2% overall nucleotide identity to a previous Neoromicia-associated MERS-related virus, also from South Africa. Conventional PCR analysis detected diverse adenovirus and herpesvirus sequences that were widespread throughout Neoromicia populations in South Africa. Furthermore, similar adenovirus sequences were detected within these populations throughout several years. With the exception of the coronaviruses, the study represents the first report of sequence data from several viral families within a Southern African insectivorous bat genus; highlighting the need for continued investigations in this regard.


Subject(s)
Chiroptera/virology , Coronavirus Infections/virology , Genome, Viral/genetics , Mammals/virology , Zoonoses/virology , Adenoviridae/genetics , Adenoviridae/pathogenicity , Animals , Chiroptera/physiology , Computational Biology , Coronavirus/genetics , Coronavirus/pathogenicity , Coronavirus Infections/veterinary , Gastrointestinal Tract/physiology , Gastrointestinal Tract/virology , Genetic Variation , Herpesviridae/genetics , Herpesviridae/pathogenicity , High-Throughput Nucleotide Sequencing , Humans , Metagenomics/methods , Phylogeny , Phylogeography , Sequence Analysis, DNA , South Africa
9.
Emerg Infect Dis ; 21(10): 1840-3, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26402433

ABSTRACT

As part of a larger survey for detection of pathogens among wildlife in sub-Saharan Africa conducted during 2007-2012, multiple diverse paramyxovirus sequences were detected in renal tissues of bats. Phylogenetic analysis supports the presence of at least 2 major viral lineages and suggests that paramyxoviruses are strongly associated with several bat genera.


Subject(s)
Chiroptera/virology , Henipavirus/pathogenicity , Paramyxoviridae Infections/epidemiology , Paramyxovirinae/classification , Prevalence , Africa South of the Sahara/epidemiology , Animals , Paramyxoviridae Infections/virology , Phylogeny , Population Surveillance/methods , RNA, Viral/classification , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...