Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 29(3): 501-510, 2023 03.
Article in English | MEDLINE | ID: mdl-36787729

ABSTRACT

In response to COVID-19, schools across the United States closed in early 2020; many did not fully reopen until late 2021. Although regular testing of asymptomatic students, teachers, and staff can reduce transmission risks, few school systems consistently used proactive testing to safeguard return to classrooms. Socioeconomically diverse public school districts might vary testing levels across campuses to ensure fair, effective use of limited resources. We describe a test allocation approach to reduce overall infections and disparities across school districts. Using a model of SARS-CoV-2 transmission in schools fit to data from a large metropolitan school district in Texas, we reduced incidence between the highest and lowest risk schools from a 5.6-fold difference under proportional test allocation to 1.8-fold difference under our optimized test allocation. This approach provides a roadmap to help school districts deploy proactive testing and mitigate risks of future SARS-CoV-2 variants and other pathogen threats.


Subject(s)
COVID-19 , Humans , United States , COVID-19/epidemiology , SARS-CoV-2 , Schools , COVID-19 Testing
2.
Nat Commun ; 12(1): 3767, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145252

ABSTRACT

Community mitigation strategies to combat COVID-19, ranging from healthy hygiene to shelter-in-place orders, exact substantial socioeconomic costs. Judicious implementation and relaxation of restrictions amplify their public health benefits while reducing costs. We derive optimal strategies for toggling between mitigation stages using daily COVID-19 hospital admissions. With public compliance, the policy triggers ensure adequate intensive care unit capacity with high probability while minimizing the duration of strict mitigation measures. In comparison, we show that other sensible COVID-19 staging policies, including France's ICU-based thresholds and a widely adopted indicator for reopening schools and businesses, require overly restrictive measures or trigger strict stages too late to avert catastrophic surges. As proof-of-concept, we describe the optimization and maintenance of the staged alert system that has guided COVID-19 policy in a large US city (Austin, Texas) since May 2020. As cities worldwide face future pandemic waves, our findings provide a robust strategy for tracking COVID-19 hospital admissions as an early indicator of hospital surges and enacting staged measures to ensure integrity of the health system, safety of the health workforce, and public confidence.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Hospitalization/statistics & numerical data , COVID-19/transmission , COVID-19/virology , Computer Simulation , Delivery of Health Care/methods , Delivery of Health Care/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Intensive Care Units/supply & distribution , Quarantine/methods , SARS-CoV-2/isolation & purification , Texas/epidemiology
3.
medRxiv ; 2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33269372

ABSTRACT

Community mitigation strategies to combat COVID-19, ranging from healthy hygiene to shelter-in-place orders, exact substantial socioeconomic costs. Judicious implementation and relaxation of restrictions amplify their public health benefits while reducing costs. We derive optimal strategies for toggling between mitigation stages using daily COVID-19 hospital admissions. With public compliance, the policy triggers ensure adequate intensive care unit capacity with high probability while minimizing the duration of strict mitigation measures. In comparison, we show that other sensible COVID-19 staging policies, including France's ICU-based thresholds and a widely adopted indicator for reopening schools and businesses, require overly restrictive measures or trigger strict stages too late to avert catastrophic surges. As cities worldwide face future pandemic waves, our findings provide a robust strategy for tracking COVID-19 hospital admissions as an early indicator of hospital surges and enacting staged measures to ensure integrity of the health system, safety of the health workforce, and public confidence.

4.
Proc Natl Acad Sci U S A ; 117(33): 19873-19878, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32727898

ABSTRACT

Following the April 16, 2020 release of the Opening Up America Again guidelines for relaxing coronavirus disease 2019 (COVID-19) social distancing policies, local leaders are concerned about future pandemic waves and lack robust strategies for tracking and suppressing transmission. Here, we present a strategy for triggering short-term shelter-in-place orders when hospital admissions surpass a threshold. We use stochastic optimization to derive triggers that ensure hospital surges will not exceed local capacity and lockdowns are as short as possible. For example, Austin, Texas-the fastest-growing large city in the United States-has adopted a COVID-19 response strategy based on this method. Assuming that the relaxation of social distancing increases the risk of infection sixfold, the optimal strategy will trigger a total of 135 d (90% prediction interval: 126 d to 141 d) of sheltering, allow schools to open in the fall, and result in an expected 2,929 deaths (90% prediction interval: 2,837 to 3,026) by September 2021, which is 29% of the annual mortality rate. In the months ahead, policy makers are likely to face difficult choices, and the extent of public restraint and cocooning of vulnerable populations may save or cost thousands of lives.


Subject(s)
COVID-19/epidemiology , Coronavirus Infections/epidemiology , Logistic Models , Physical Distancing , Pneumonia, Viral/epidemiology , Quarantine/methods , Surge Capacity/organization & administration , COVID-19/economics , COVID-19/prevention & control , Coronavirus Infections/economics , Coronavirus Infections/prevention & control , Cost of Illness , Hospitalization/economics , Hospitalization/statistics & numerical data , Humans , Pandemics/economics , Pandemics/prevention & control , Pneumonia, Viral/economics , Pneumonia, Viral/prevention & control , Quarantine/economics , Quarantine/organization & administration , Surge Capacity/economics , Time , Vulnerable Populations
5.
PLoS One ; 12(8): e0182720, 2017.
Article in English | MEDLINE | ID: mdl-28854244

ABSTRACT

Vaccines are arguably the most important means of pandemic influenza mitigation. However, as during the 2009 H1N1 pandemic, mass immunization with an effective vaccine may not begin until a pandemic is well underway. In the U.S., state-level public health agencies are responsible for quickly and fairly allocating vaccines as they become available to populations prioritized to receive vaccines. Allocation decisions can be ethically and logistically complex, given several vaccine types in limited and uncertain supply and given competing priority groups with distinct risk profiles and vaccine acceptabilities. We introduce a model for optimizing statewide allocation of multiple vaccine types to multiple priority groups, maximizing equal access. We assume a large fraction of available vaccines are distributed to healthcare providers based on their requests, and then optimize county-level allocation of the remaining doses to achieve equity. We have applied the model to the state of Texas, and incorporated it in a Web-based decision-support tool for the Texas Department of State Health Services (DSHS). Based on vaccine quantities delivered to registered healthcare providers in response to their requests during the 2009 H1N1 pandemic, we find that a relatively small cache of discretionary doses (DSHS reserved 6.8% in 2009) suffices to achieve equity across all counties in Texas.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza Vaccines/supply & distribution , Influenza, Human/prevention & control , Public Health/methods , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Influenza Vaccines/therapeutic use , Influenza, Human/epidemiology , Male , Mass Vaccination , Middle Aged , Pregnancy , Texas/epidemiology , Vaccination , Young Adult
6.
Emerg Infect Dis ; 23(6): 914-921, 2017 06.
Article in English | MEDLINE | ID: mdl-28518041

ABSTRACT

In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response.


Subject(s)
Influenza, Human/epidemiology , Models, Statistical , Pandemics , Respiratory Insufficiency/epidemiology , Ventilators, Mechanical/supply & distribution , Civil Defense/organization & administration , Humans , Influenza, Human/complications , Influenza, Human/physiopathology , Influenza, Human/therapy , Public Health/methods , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Texas/epidemiology
7.
Emerg Infect Dis ; 21(2): 251-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25625858

ABSTRACT

We provide a data-driven method for optimizing pharmacy-based distribution of antiviral drugs during an influenza pandemic in terms of overall access for a target population and apply it to the state of Texas, USA. We found that during the 2009 influenza pandemic, the Texas Department of State Health Services achieved an estimated statewide access of 88% (proportion of population willing to travel to the nearest dispensing point). However, access reached only 34.5% of US postal code (ZIP code) areas containing <1,000 underinsured persons. Optimized distribution networks increased expected access to 91% overall and 60% in hard-to-reach regions, and 2 or 3 major pharmacy chains achieved near maximal coverage in well-populated areas. Independent pharmacies were essential for reaching ZIP code areas containing <1,000 underinsured persons. This model was developed during a collaboration between academic researchers and public health officials and is available as a decision support tool for Texas Department of State Health Services at a Web-based interface.


Subject(s)
Antiviral Agents/supply & distribution , Influenza, Human/epidemiology , Algorithms , Decision Support Techniques , Geography , Humans , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Models, Theoretical , Pharmacies , Texas
SELECTION OF CITATIONS
SEARCH DETAIL
...