Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 22(3): 1421-6, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22226656

ABSTRACT

Serotoninergic neurotransmission has been implicated in modulation of learning and memory. It has been demonstrated that 5-hydroxytryptamine(6) (5-HT(6)) receptor antagonists show beneficial effect on cognition in several animal models. Based on a pharmacophore model reported in the literature, we have designed and successfully identified a 7-benzenesulfonyl-1,2,3,4-tetrahydro-benzo[4,5]furo[2,3-c]pyridine (3a) scaffold as a novel class of 5-HT(6) receptor antagonists. Despite good activity against 5-HT(6) receptor, 3a exhibited poor liver microsome stability in mouse, rat and dog. It was demonstrated that the saturation of the double bond of the tetrahydropyridine ring of 3a enhanced metabolic stability. However the resulting compound, 4a (7-phenylsulfonyl-1,2,3,4,4a,9a-hexahydro-benzo[4,5]furo[2,3-c] pyridine-HCl salt) exhibited ∼30-fold loss in potency along with introduction of two chiral centers. In our optimization process for this series, we found that substituents at the 2 or 3 positions on the distal aryl group are important for enhancing activity against 5-HT(6). Separation of enantiomers and subsequent optimization and SAR with bis substituted phenyl sulfone provided potent 5-HT(6) antagonists with improved PK profiles in rat. A potent, selective 5-HT(6)R antagonist (15k) was identified from this study which showed good oral bioavailability (F=39%) in rat with brain penetration (B/P=2.76) and in vivo activity in a rat social recognition test.


Subject(s)
Brain/drug effects , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Sulfones/chemistry , Sulfones/pharmacology , Animals , Dogs , Humans , Inhibitory Concentration 50 , Mice , Microsomes, Liver/drug effects , Molecular Structure , Rats , Receptors, Serotonin , Serotonin Antagonists/pharmacokinetics , Stereoisomerism
2.
Bioorg Med Chem Lett ; 22(1): 120-3, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22153937

ABSTRACT

7-Arylsulfonyl substituted benzofuropiperidine was discovered as a novel scaffold for 5HT(6) receptor antagonists. Optimization by substitution at C-1 position led to identification of selective, orally bioavailable, brain penetrant antagonists with reduced hERG liability. An advanced analog tested in rat social recognition model showed significant activity suggesting potential utility in the enhancement of short-term memory.


Subject(s)
Benzofurans/chemistry , Piperidines/chemistry , Receptors, Serotonin/chemistry , Serotonin Antagonists/pharmacology , Animals , Brain/embryology , Brain/metabolism , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Inhibitory Concentration 50 , Kinetics , Memory, Short-Term/drug effects , Models, Chemical , Rats , Schizophrenia/drug therapy , Structure-Activity Relationship
4.
J Leukoc Biol ; 80(4): 897-904, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16888084

ABSTRACT

It is well established that melanocortins are peptides that have potent anti-inflammatory activity. Recent research has focused on understanding which of the known melanocortin receptors mediates the anti-inflammatory actions of the melanocortins. The aim of this study was to assess the anti-inflammatory activity of a synthetic MC-1R agonist. BMS-470539 is a potent, selective, full agonist of human and murine MC-1R with EC(50) values in a cAMP accumulation assay of 16.8 and 11.6 nM, respectively. BMS-470539 dose-dependently inhibited TNF-alpha-induced activation of a NF-kappaB transcriptional reporter in human melanoma cells, which endogenously express MC-1R. In vivo studies with BMS-470539 demonstrated that subcutaneous administration of BMS-470539 resulted in a dose-dependent inhibition of LPS-induced TNF-alpha production in BALB/c mice. In this model, the compound had an ED(50) of approximately 10 micromol/kg and a pharmacodynamic half-life of approximately 8 h. Pharmacokinetic analysis of the compound indicated that the compound had a t(1/2) of 1.7 h. In a model of lung inflammation, administration of 15 micromol/kg BMS-470539 resulted in a 45% reduction in LPS-induced leukocyte infiltration (an infiltrate comprised primarily of neutrophils). The compound was also effective in a model of delayed-type hypersensitivity, reducing paw swelling by 59%, comparable with that seen with 5 mg/kg dexamethasone. These studies demonstrate that a selective small molecule agonist of the melanocortin-1 receptor is a potent anti-inflammatory agent in vivo and provides compelling evidence for the involvement of this receptor in the modulation of inflammation.


Subject(s)
Cytokines/metabolism , Imidazoles/administration & dosage , Leukocytes/drug effects , Lipopolysaccharides/antagonists & inhibitors , Receptor, Melanocortin, Type 1/agonists , Animals , Cell Line , Cell Movement/drug effects , Cell Movement/immunology , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Female , Humans , Imidazoles/chemistry , Inflammation/immunology , Leukocytes/immunology , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Weight , Structure-Activity Relationship , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...