Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Front Immunol ; 15: 1368290, 2024.
Article in English | MEDLINE | ID: mdl-38690288

ABSTRACT

Background: NK cells can be genetically engineered to express a transgenic T-cell receptor (TCR). This approach offers an alternative strategy to target heterogenous tumors, as NK:TCR cells can eradicate both tumor cells with high expression of HLA class I and antigen of interest or HLA class I negative tumors. Expansion and survival of NK cells relies on the presence of IL-15. Therefore, autonomous production of IL-15 by NK:TCR cells might improve functional persistence of NK cells. Here we present an optimized NK:TCR product harnessed with a construct encoding for soluble IL-15 (NK:TCR/IL-15), to support their proliferation, persistence and cytotoxic capabilities. Methods: Expression of tumor-specific TCRs in peripheral blood derived NK-cells was achieved following retroviral transduction. NK:TCR/IL-15 cells were compared with NK:TCR cells for autonomous cytokine production, proliferation and survival. NK:BOB1-TCR/IL-15 cells, expressing a HLA-B*07:02-restricted TCR against BOB1, a B-cell lineage specific transcription factor highly expressed in all B-cell malignancies, were compared with control NK:BOB1-TCR and NK:CMV-TCR/IL-15 cells for effector function against TCR antigen positive malignant B-cell lines in vitro and in vivo. Results: Viral incorporation of the interleukin-15 gene into engineered NK:TCR cells was feasible and high expression of the TCR was maintained, resulting in pure NK:TCR/IL-15 cell products generated from peripheral blood of multiple donors. Self-sufficient secretion of IL-15 by NK:TCR cells enables engineered NK cells to proliferate in vitro without addition of extra cytokines. NK:TCR/IL-15 demonstrated a marked enhancement of TCR-mediated cytotoxicity as well as enhanced NK-mediated cytotoxicity resulting in improved persistence and performance of NK:BOB1-TCR/IL-15 cells in an orthotopic multiple myeloma mouse model. However, in contrast to prolonged anti-tumor reactivity by NK:BOB1-TCR/IL-15, we observed in one of the experiments an accumulation of NK:BOB1-TCR/IL-15 cells in several organs of treated mice, leading to unexpected death 30 days post-NK infusion. Conclusion: This study showed that NK:TCR/IL-15 cells secrete low levels of IL-15 and can proliferate in an environment lacking cytokines. Repeated in vitro and in vivo experiments confirmed the effectiveness and target specificity of our product, in which addition of IL-15 supports TCR- and NK-mediated cytotoxicity.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Receptors, Antigen, T-Cell , Interleukin-15/genetics , Interleukin-15/immunology , Interleukin-15/metabolism , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Cytotoxicity, Immunologic , Cell Proliferation , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Genetic Engineering
5.
Mol Ther Methods Clin Dev ; 28: 249-261, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36816758

ABSTRACT

The balance between safety and efficacy of T cell therapies remains challenging and T cell mediated toxicities have occurred. The stringent selection of tumor-specific targets and careful selection of tumor-specific T cells using T cell toxicity screenings are essential. In vitro screening options against vital organs or specialized cell subsets would be preferably included in preclinical pipelines, but options remain limited. Here, we set up preclinical models with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, epicardial cells, and kidney organoids to investigate toxicity risks of tumor-specific T cells more thoroughly. CD8+T cells reactive against PRAME, HA-1H, CD20, or WT1, currently used or planned to be used in phase I/II clinical studies, were included. Using these hiPSC-derived preclinical models, we demonstrated that WT1-specific T cells caused on-target toxicity that correlated with target gene expression. Multiple measures of T cell reactivity demonstrated this toxicity on the level of T cells and hiPSC-derived target cells. In addition, phenotypic analysis illustrated interaction and crosstalk between infiltrated T cells and kidney organoids. In summary, we demonstrated the benefit of hiPSC-derived models in determining toxicity risks of tumor-specific T cells. Furthermore, our data emphasizes the additional value of other measures of T cell reactivity on top of the commonly used cytokine levels.

6.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35288464

ABSTRACT

BACKGROUND: T cell receptor (TCR)-engineered cells can be powerful tools in the treatment of malignancies. However, tumor resistance by Human Leukocyte antigen (HLA) class I downregulation can negatively impact the success of any TCR-mediated cell therapy. Allogeneic natural killer (NK) cells have demonstrated efficacy and safety against malignancies without inducing graft-versus-host-disease, highlighting the feasibility for an 'off the shelf' cellular therapeutic. Furthermore, primary NK cells can target tumors using a broad array of intrinsic activation mechanisms. In this study, we combined the antitumor effector functions of NK cells with TCR engineering (NK-TCR), creating a novel therapeutic strategy to avoid TCR-associated immune resistance. METHODS: BOB1, is a transcription factor highly expressed in all healthy and malignant B cell lineages, including multiple myeloma (MM). Expression of an HLA-B*07:02 restricted BOB1-specifc TCR in peripheral blood-derived NK cells was achieved following a two-step retroviral transduction protocol. NK-TCR was then compared with TCR-negative NK cells and CD8-T cells expressing the same TCR for effector function against HLA-B*07:02+ B-cell derived lymphoblastoid cell lines (B-LCL), B-cell acute lymphoblastic leukemia and MM cell lines in vitro and in vivo. RESULTS: Firstly, TCR could be reproducibly expressed in NK cells isolated from the peripheral blood of multiple healthy donors generating pure NK-TCR cell products. Secondly, NK-TCR demonstrated antigen-specific effector functions against malignancies which were previously resistant to NK-mediated lysis and enhanced NK efficacy in vivo using a preclinical xenograft model of MM. Moreover, antigen-specific cytotoxicity and cytokine production of NK-TCR was comparable to CD8 T cells expressing the same TCR. Finally, in a model of HLA-class I loss, tumor cells with B2M KO were lysed by NK-TCR in an NK-mediated manner but were resistant to T-cell based killing. CONCLUSION: NK-TCR cell therapy enhances NK cell efficacy against tumors through additional TCR-mediated lysis. Furthermore, the dual efficacy of NK-TCR permits the specific targeting of tumors and the associated TCR-associated immune resistance, making NK-TCR a unique cellular therapeutic.


Subject(s)
Multiple Myeloma , Tumor Escape , Histocompatibility Antigens Class I , Humans , Killer Cells, Natural , Receptors, Antigen, T-Cell/genetics
7.
Cancer Res ; 82(5): 773-784, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34965933

ABSTRACT

Antibody-peptide epitope conjugates (APEC) are a new class of modified antibody-drug conjugates that redirect T-cell viral immunity against tumor cells. APECs contain a tumor-specific protease cleavage site linked to a patient-specific viral epitope, resulting in presentation of viral epitopes on cancer cells and subsequent recruitment and killing by CD8+ T cells. Here we developed an experimental pipeline to create patient-specific APECs and identified new preclinical therapies for ovarian carcinoma. Using functional assessment of viral peptide antigen responses to common viruses like cytomegalovirus (CMV) in patients with ovarian cancer, a library of 192 APECs with distinct protease cleavage sequences was created using the anti-epithelial cell adhesion molecule (EpCAM) antibody. Each APEC was tested for in vitro cancer cell killing, and top candidates were screened for killing xenograft tumors grown in zebrafish and mice. These preclinical modeling studies identified EpCAM-MMP7-CMV APEC (EpCAM-MC) as a potential new immunotherapy for ovarian carcinoma. Importantly, EpCAM-MC also demonstrated robust T-cell responses in primary ovarian carcinoma patient ascites samples. This work highlights a robust, customizable platform to rapidly develop patient-specific APECs. SIGNIFICANCE: This study develops a high-throughput preclinical platform to identify patient-specific antibody-peptide epitope conjugates that target cancer cells and demonstrates the potential of this immunotherapy approach for treating ovarian carcinoma.


Subject(s)
Cytomegalovirus Infections , Immunoconjugates , Ovarian Neoplasms , Animals , Antibodies , CD8-Positive T-Lymphocytes , Carcinoma, Ovarian Epithelial/drug therapy , Cytomegalovirus , Epithelial Cell Adhesion Molecule , Epitopes , Female , Humans , Immunoconjugates/therapeutic use , Mice , Ovarian Neoplasms/drug therapy , Peptide Hydrolases , Peptides , Zebrafish
8.
Mol Ther ; 30(2): 564-578, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34371177

ABSTRACT

CAR T cell therapy has shown great promise for the treatment of B cell malignancies. However, antigen-negative escape variants often cause disease relapse, necessitating the development of multi-antigen-targeting approaches. We propose that a T cell receptor (TCR)-based strategy would increase the number of potential antigenic targets, as peptides from both intracellular and extracellular proteins can be recognized. Here, we aimed to isolate a broad range of promising TCRs targeting multiple antigens for treatment of B cell malignancies. As a first step, 28 target genes for B cell malignancies were selected based on gene expression profiles. Twenty target peptides presented in human leukocyte antigen (HLA)-A∗01:01, -A∗24:02, -B∗08:01, or -B∗35:01 were identified from the immunopeptidome of B cell malignancies and used to form peptide-HLA (pHLA)-tetramers for T cell isolation. Target-peptide-specific CD8 T cells were isolated from HLA-mismatched healthy donors and subjected to a stringent stepwise selection procedure to ensure potency and eliminate cross-reactivity. In total, five T cell clones specific for FCRL5 in HLA-A∗01:01, VPREB3 in HLA-A∗24:02, and BOB1 in HLA-B∗35:01 recognized B cell malignancies. For all three specificities, TCR gene transfer into CD8 T cells resulted in cytokine production and efficient killing of multiple B cell malignancies. In conclusion, using this systematic approach we successfully identified three promising TCRs for T cell therapy against B cell malignancies.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , CD8-Positive T-Lymphocytes , Cell- and Tissue-Based Therapy , Humans , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism
9.
J Infect Dis ; 226(5): 833-842, 2022 09 13.
Article in English | MEDLINE | ID: mdl-32808978

ABSTRACT

BACKGROUND: Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs) is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV antigens (LMP1/2). Patients who are HLA-A*01:01 positive could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. METHODS: HLA-A*01:01-restricted EBV-LMP2-specific T cells were isolated using peptide major histocompatibility complex (pMHC) tetramers. Functionality was assessed by production of interferon gamma (IFN-γ) and cytotoxicity when stimulated with EBV-LMP2-expressing cell lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCRs of primary T cells (∆TCR) using CRISPR-Cas9 technology. RESULTS: EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene transfer in primary T cells resulted in specific pMHC tetramer binding and reactivity against EBV-LMP2-expressing cell lines. The mean fluorescence intensity of pMHC-tetramer binding was increased 1.5-2 fold when the endogenous TCRs of CD8+ T cells was knocked out. CD8+/∆TCR T cells modified to express EBV-LMP2-specific TCRs showed IFN-γ secretion and cytotoxicity toward EBV-LMP2-expressing malignant cell lines. CONCLUSIONS: We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene therapy to treat EBV-associated latency type II/III malignancies.


Subject(s)
Epstein-Barr Virus Infections , HLA-A Antigens , Herpesvirus 4, Human , Receptors, Antigen, T-Cell , Viral Matrix Proteins , Humans , Interferon-gamma , Receptors, Antigen, T-Cell/genetics , Viral Matrix Proteins/immunology
10.
Nat Biotechnol ; 38(4): 420-425, 2020 04.
Article in English | MEDLINE | ID: mdl-32042168

ABSTRACT

Several cancer immunotherapy approaches, such as immune checkpoint blockade and adoptive T-cell therapy, boost T-cell activity against the tumor, but these strategies are not effective in the absence of T cells specific for displayed tumor antigens. Here we outline an immunotherapy in which endogenous T cells specific for a noncancer antigen are retargeted to attack tumors. The approach relies on the use of antibody-peptide epitope conjugates (APECs) to deliver suitable antigens to the tumor surface for presention by HLA-I. To retarget cytomegalovirus (CMV)-specific CD8+ T cells against tumors, we used APECs containing CMV-derived epitopes conjugated to tumor-targeting antibodies via metalloprotease-sensitive linkers. These APECs redirect pre-existing CMV immunity against tumor cells in vitro and in mouse cancer models. In vitro, APECs activated specifically CMV-reactive effector T cells whereas a bispecific T-cell engager activated both effector and regulatory T cells. Our approach may provide an effective alternative in cancers that are not amenable to checkpoint inhibitors or other immunotherapies.


Subject(s)
Antibodies/immunology , CD8-Positive T-Lymphocytes/transplantation , Cytomegalovirus/immunology , Epitopes, T-Lymphocyte/immunology , Immunoconjugates/therapeutic use , Neoplasms/therapy , Animals , Antibodies/chemistry , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Epitopes, T-Lymphocyte/chemistry , Histocompatibility Antigens Class I/immunology , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/metabolism , Immunomodulation , Immunotherapy, Adoptive , Lymphocyte Activation , Matrix Metalloproteinases/metabolism , Mice , Neoplasms/immunology
11.
Mol Ther ; 28(1): 64-74, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31636040

ABSTRACT

Generation of an optimal T cell therapeutic expressing high frequencies of transgenic T cell receptor (tgTCR) is essential for improving TCR gene therapy. Upon TCR gene transfer, presence of endogenous TCRαß reduces expression of tgTCR due to TCR mixed-dimer formation and competition for binding CD3. Knockout (KO) of endogenous TCRαß was recently achieved using CRISPR/Cas9 editing of the TRAC or TRBC loci, resulting in increased expression and function of tgTCR. Here, we adopt this approach into current protocols for generating T cell populations expressing tgTCR to validate this strategy in the context of four clinically relevant TCRs. First, simultaneous editing of TRAC and TRBC loci was reproducible and resulted in high double KO efficiencies in bulk CD8 T cells. Next, tgTCR expression was significantly higher in double TRAC/BC KO conditions for all TCRs tested, including those that contained structural modifications to encourage preferential pairing. Finally, increased expression of tgTCR in edited T cell populations allowed for increased recognition of antigen expressing tumor targets and prolonged control of tumor outgrowth in a preclinical model of multiple myeloma. In conclusion, CRISPR/Cas9-mediated KO of both endogenous TCRαß chains can be incorporated in current T cell production protocols and is preferential to ensure an improved and safe clinical therapeutic.


Subject(s)
Adoptive Transfer/methods , CRISPR-Cas Systems , Gene Editing/methods , Genetic Therapy/methods , Multiple Myeloma/therapy , Receptors, Antigen, T-Cell, alpha-beta/genetics , Adoptive Transfer/adverse effects , Animals , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes , Female , Genes, T-Cell Receptor , Genetic Therapy/adverse effects , Healthy Volunteers , Humans , K562 Cells , Male , Mice , Mice, Inbred NOD , Multiple Myeloma/pathology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Transduction, Genetic , Treatment Outcome , Xenograft Model Antitumor Assays
12.
Oncotarget ; 9(25): 17608-17619, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29707134

ABSTRACT

Adoptive T cell therapy using TCR transgenic autologous T cells has shown great potential for the treatment of tumor patients. Thorough characterization of genetically reprogrammed T cells is necessary to optimize treatment success. Here, we describe the generation of triple parameter reporter T cells based on the Jurkat 76 T cell line for the evaluation of TCR and chimeric antigen receptor functions as well as adoptive T cell strategies. This Jurkat subline is devoid of endogenous TCR alpha and TCR beta chains, thereby circumventing the problem of TCR miss-pairing and unexpected specificities. The resultant reporter cells allow simultaneous determination of the activity of the transcription factors NF-κB, NFAT and AP-1 that play key roles in T cell activation. Human TCRs directed against tumor and virus antigens were introduced and reporter responses were determined using tumor cell lines endogenously expressing the antigens of interest or via addition of antigenic peptides. Finally, we demonstrate that coexpression of adhesion molecules like CD2 and CD226 as well as CD28 chimeric receptors represents an effective strategy to augment the response of TCR-transgenic reporters to cells presenting cognate antigens.

13.
Curr Opin Rheumatol ; 28(1): 39-44, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26599381

ABSTRACT

PURPOSE OF REVIEW: This article discusses recent genetic and epigenetic associations involved in the pathogenesis of Behçet's disease. RECENT FINDINGS: Genetic studies have supported the strong association of human leukocyte antigen-B and Behçet's disease, and high production of tumour necrosis factor and low production of interleukin (IL)-10, which have led to therapy based on controlling these effects. Polymorphisms that affect the response to pathogens (TLR and FUT2) are leading to increased interest in responses to microbiomes. Inflammation in Behçet's disease results in vascular damage and several single nucleotide polymorphisms in chemokine and adhesion molecules may be involved in this process. Increased levels of inflammatory cytokines including IL-1ß and IL-17 have been linked to altered expression of microRNAs, miR155, miR21 and miR23b. DNA methylation changes in monocytes and lymphocytes have been described that affect the function of these cells. SUMMARY: Genetic and epigenetic changes affecting cells and molecules involved in Behçet's disease offer new pathways for research, including cytoskeletal protein function, that will provide new targets for therapy, and potentially address the ethnic differences seen in validation of gene studies.


Subject(s)
Behcet Syndrome/genetics , Behcet Syndrome/immunology , Cytokines/genetics , Epigenesis, Genetic , HLA Antigens/genetics , Humans , Polymorphism, Single Nucleotide , Vasculitis/genetics
14.
J Exp Med ; 210(5): 933-49, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23569328

ABSTRACT

Virus-specific CD4(+) T cells are key orchestrators of host responses to viral infection yet, compared with their CD8(+) T cell counterparts, remain poorly characterized at the single cell level. Here we use nine MHC II-epitope peptide tetramers to visualize human CD4(+) T cell responses to Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis (IM), a disease associated with large virus-specific CD8(+) T cell responses. We find that, while not approaching virus-specific CD8(+) T cell expansions in magnitude, activated CD4(+) T cells specific for epitopes in the latent antigen EBNA2 and four lytic cycle antigens are detected at high frequencies in acute IM blood. They then fall rapidly to values typical of life-long virus carriage where most tetramer-positive cells display conventional memory markers but some, unexpectedly, revert to a naive-like phenotype. In contrast CD4(+) T cell responses to EBNA1 epitopes are greatly delayed in IM patients, in line with the well-known but hitherto unexplained delay in EBNA1 IgG antibody responses. We present evidence from an in vitro system that may explain these unusual kinetics. Unlike other EBNAs and lytic cycle proteins, EBNA1 is not naturally released from EBV-infected cells as a source of antigen for CD4(+) T cell priming.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Nuclear Antigens/immunology , Herpesvirus 4, Human/immunology , Histocompatibility Antigens Class II/immunology , Protein Multimerization , Acute Disease , Antibody Formation/immunology , Antigens, Viral/immunology , Cell Proliferation , Convalescence , Epitopes/immunology , Humans , Immunoglobulin G/immunology , Immunologic Memory , Infectious Mononucleosis/immunology , Infectious Mononucleosis/pathology , Kinetics , Phenotype , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...