Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3443, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301872

ABSTRACT

Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts. The best performing single component polymer yields a rate of 66 µmol h-1 m-2, which we attribute to the polymer exhibiting macroporosity and the longest exciton lifetimes. The addition of copper iodide, as a source of a copper co-catalyst in the polymers shows an increase in rate, with the best performing polymer achieving a rate of 175 µmol h-1 m-2. The polymers are active for over 100 h under operating conditions. This work shows the potential of processable polymers of intrinsic porosity for use in the gas phase photoreduction of carbon dioxide towards solar fuels.


Subject(s)
Carbon Dioxide , Polymers , Copper , Carbon Monoxide , Porosity
2.
Adv Mater ; : e2300037, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165538

ABSTRACT

2D polymers have emerged as one of the most promising classes of organic photocatalysts for solar fuel production due to their tunability, charge-transport properties, and robustness. They are however difficult to process and so there are limited studies into the formation of heterojunction materials incorporating these components. In this work, a novel templating approach is used to combine an imine-based donor polymer and an acceptor polymer formed through Knoevenagel condensation. Heterojunction formation is shown to be highly dependent on the topological match of the donor and acceptor polymers with the most active templated material found to be between three and nine times more active for photocatalysis than its constituent components. Transient absorption spectroscopy reveals that this improvement is due to faster charge separation and more efficient charge extraction in the templated heterojunction. The templated material shows a very high hydrogen evolution rate of >20 mmol h-1 m-2 with an ascorbic acid hole scavenger but also produces hydrogen in the presence of only water and a cobalt-based redox mediator. This suggests the improved charge-separation interface and reduced trapping accessed through this approach could be suitable for Z-scheme formation.

3.
Mater Horiz ; 9(3): 973-980, 2022 03 07.
Article in English | MEDLINE | ID: mdl-34935815

ABSTRACT

To date, many of the high-performance conjugated polymers employed as OECT channel materials make use of ethylene glycol (EG) chains to confer the materials with mixed ionic-electronic conduction properties, with limited emphasis placed on alternative hydrophilic moieties. While a degree of hydrophilicity is required to facilitate some ionic conduction in hydrated channels, an excess results in excessive swelling, with potentially detrimental effects on charge transport. This is therefore a subtle balance that must be optimised to maximise electrical performance. Herein a series of polymers based on a bithiophene-thienothiophene conjugated backbone was synthesised and the conventional EG chains substituted by their propylene and butylene counterparts. Specifically, the use of propylene and butylene chains was found to afford polymers with a more hydrophobic character, thereby reducing excessive water uptake during OECT operation and in turn significantly boosting the polymers' electronic charge carrier mobility. Despite the polymers' lower water uptake, the newly developed oligoether chains retained sufficiently high degrees of hydrophilicity to enable bulk volumetric doping, ultimately resulting in the development of polymers with superior OECT performance.


Subject(s)
Ethylene Glycol , Polymers , Alkenes , Butylene Glycols , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...