Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 2970, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30814603

ABSTRACT

Magnetic skyrmions are topologically protected domain structures related to the Dzyaloshinskii-Moriya interaction (DMI). To understand how magnetic skyrmions occur under different circumstances, we propose a model for skyrmion formation in a bilayer system of ferromagnetic/antiferromagnetic (FM/AFM) films, in which the bulk DMI is only present in the AFM film. Micromagnetic simulations reveal that skyrmions are formed in this system due to the competition between the DMI and demagnetization energies. A critical interfacial exchange energy (Ai = 6.5 mJ/m2) is determined, above which the competition occurs at its full extent. More skyrmions are formed with increasing external magnetic field till a critical value above which the external field is too large and thus leading to the annihilation of skyrmions. The spacing between two skyrmions can be as small as 45 nm. Our results may give technological implications for future skyrmion applications.

2.
Sci Rep ; 5: 16212, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26586226

ABSTRACT

Hard/soft permanent magnets have aroused many interests in the past two decades because of their potential in achieving giant energy products as well as their rich variety of magnetic behaviors. Nevertheless, the experimental energy products are much smaller than the theoretical ones due to the much smaller coercivity measured in the experiments. In this paper, the deterioration of the coercivity due to the interface atomic diffusion is demonstrated based on a three dimensional (3D) micromagnetic software (OOMMF) and a formula derived for the pinning field in a hard/soft multilayer, which can be applied to both permanent magnets and exchange-coupled-composite (ECC) media. It is found that the formation of the interface layer can decrease the coercivity by roughly 50%, which is responsible for the observed smaller coercivity in both composite and single-phased permanent magnets. A method to enhance the coercivity in these systems is proposed based on the discussions, consistent with recent experiments where excellent magnetic properties are achieved.

3.
Sci Rep ; 5: 7643, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25560935

ABSTRACT

Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.

SELECTION OF CITATIONS
SEARCH DETAIL
...