Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 22(3): 441-449, 2020 May.
Article in English | MEDLINE | ID: mdl-31834979

ABSTRACT

In subalpine grasslands of the central French Alps, cessation of traditional mowing promotes dominance of Patzkea paniculata (L.) G.H.Loos (Poaceae) tussocks, with high biomass but low fodder quality. Mowing limits P. paniculata abundance through the depletion of its water-soluble carbohydrate (WSC) reserves, which sustain early spring growth initiation. However, the effectiveness of mowing effects is modulated by grassland functional composition, fertilization and climate change, as WSC compounds, and notably fructans, support plant physiological responses to climate stresses such as drought or frost. To characterize the mechanisms underpinning the control of P. paniculata under global change, we tested the effects of climate manipulation (combined snow removal and drought) and management (cutting and fertilization) alone or in combination on P. paniculata WSC storage in assembled grassland communities of varying functional composition. Management and climate treatments individually decreased seasonal fructan storage, with neither additive nor synergic effects between them, primarily due to the dominance of management over climate effects. Fructan amounts were higher in individuals growing in unmanaged exploitative communities compared to unmanaged conservative communities, regardless of climate treatments, but management overrode these differences. Our findings suggest that reduction by combined snow removal and drought of P. paniculata carbon allocation to WSC storage may similarly limit its dominance to that in current mowing practices.


Subject(s)
Carbohydrates , Droughts , Grassland , Poaceae , Water , Carbohydrates/chemistry , Poaceae/chemistry , Poaceae/metabolism , Seasons , Water/chemistry
2.
Planta ; 213(1): 109-20, 2001 May.
Article in English | MEDLINE | ID: mdl-11523646

ABSTRACT

The study of carbohydrate metabolism in perennial ryegrass (Lolium perenne L. cv. Bravo) during the first 48 h of regrowth showed that fructans from elongating leaf bases were hydrolysed first whereas fructans in mature leaf sheaths were degraded only after a lag of 1.5 h. In elongating leaf bases, the decline in fructan content occurred not only in the differentiation zone (30-60 mm from the leaf base), but also in the growth zone. Unlike other soluble carbohydrates, the net deposition rate of fructose remained positive and even rose during the first day following defoliation. The activity of fructan exohydrolase (FEH; EC 3.2.1.80) was maximal in the differentiation zone before defoliation and increased in all segments, but peaked in the growth zone after defoliation. These data strongly indicate that fructans stored in the leaf growth zone were hydrolysed and recycled in that zone to sustain the refoliation immediately after defoliation. Despite the depletion of carbohydrates, leaves of defoliated plants elongated at a significantly higher rate than those of undefoliated plants, during the first 10 h of regrowth. This can be partly attributed to the transient increase in water and nitrate deposition rate. The results are discussed in relation to defoliation tolerance.


Subject(s)
Bacterial Proteins , Fructans/metabolism , Lolium/physiology , Plant Leaves/growth & development , Plant Proteins , Carbohydrate Metabolism , Cell Division , Glycoside Hydrolases/metabolism , Hexosyltransferases/metabolism , Lolium/enzymology , Lolium/growth & development , Meristem/physiology , Models, Biological , Nitrates/metabolism , Plant Leaves/metabolism , Sucrose/metabolism , Water/metabolism , beta-Fructofuranosidase
SELECTION OF CITATIONS
SEARCH DETAIL
...