Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 206(7): 338, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955856

ABSTRACT

Oleaginous fungi have attracted a great deal of interest for their potency to accumulate high amounts of lipids (more than 20% of biomass dry weight) and polyunsaturated fatty acids (PUFAs), which have a variety of industrial and biological applications. Lipids of plant and animal origin are related to some restrictions and thus lead to attention towards oleaginous microorganisms as reliable substitute resources. Lipids are traditionally biosynthesized intra-cellularly and involved in the building structure of a variety of cellular compartments. In oleaginous fungi, under certain conditions of elevated carbon ratio and decreased nitrogen in the growth medium, a change in metabolic pathway occurred by switching the whole central carbon metabolism to fatty acid anabolism, which subsequently resulted in high lipid accumulation. The present review illustrates the bio-lipid structure, fatty acid classes and biosynthesis within oleaginous fungi with certain key enzymes, and the advantages of oleaginous fungi over other lipid bio-sources. Qualitative and quantitative techniques for detecting the lipid accumulation capability of oleaginous microbes including visual, and analytical (convenient and non-convenient) were debated. Factors affecting lipid production, and different approaches followed to enhance the lipid content in oleaginous yeasts and fungi, including optimization, utilization of cost-effective wastes, co-culturing, as well as metabolic and genetic engineering, were discussed. A better understanding of the oleaginous fungi regarding screening, detection, and maximization of lipid content using different strategies could help to discover new potent oleaginous isolates, exploit and recycle low-cost wastes, and improve the efficiency of bio-lipids cumulation with biotechnological significance.


Subject(s)
Biofuels , Dietary Supplements , Fungi , Fungi/metabolism , Fungi/genetics , Dietary Supplements/analysis , Lipids/biosynthesis , Lipids/analysis , Lipid Metabolism , Metabolic Engineering , Fatty Acids/metabolism , Fatty Acids/analysis , Biomass , Carbon/metabolism
3.
J Nanobiotechnology ; 22(1): 28, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216982

ABSTRACT

Incorporating green chemistry concepts into nanotechnology is an important focus area in nanoscience. The demand for green metal oxide nanoparticle production has grown in recent years. The beneficial effects of using nanoparticles in agriculture have already been established. Here, we highlight some potential antifungal properties of Zizyphus spina leaf extract-derived copper oxide nanoparticles (CuO-Zs-NPs), produced with a spherical shape and defined a 13-30 nm particle size. Three different dosages of CuO-Zs-NPs were utilized and showed promising antifungal efficacy in vitro and in vivo against the selected fungal strain of F. solani causes tomato root rot disease, which was molecularly identified with accession number (OP824846). In vivo  results indicated that, for all CuO-Zs-NPs concentrations, a significant reduction in Fusarium root rot disease occurred between 72.0 to 88.6% compared to 80.5% disease severity in the infected control. Although treatments with either the chemical fungicide (Kocide 2000) showed a better disease reduction and incidence with (18.33% and 6.67%) values, respectively, than CuO-Zs-NPs at conc. 50 mg/l, however CuO-Zs-NPs at 250 mg/l conc. showed the highest disease reduction (9.17 ± 2.89%) and lowest disease incidence (4.17 ± 3.80%). On the other hand, CuO-Zs-NPs at varied values elevated the beneficial effects of tomato seedling vigor at the initial stages and plant growth development compared to either treatment with the commercial fungicide or Trichoderma Biocide. Additionally, CuO-Zs-NPs treatments introduced beneficial results for tomato seedling development, with a significant increase in chlorophyll pigments and enzymatic activity for CuO-Zs-NPs treatments. Additionally, treatment with low concentrations of CuO-Zs-NPs led to a rise in the number of mature pollen grains compared to the immature ones.  however the data showed that CuO-Zs-NPs have a unique antifungal mechanism against F. solani, they  subsequently imply that CuO-Zs-NPs might be a useful environmentally friendly controlling agent for the Fusarium root rot disease that affects tomato plants.


Subject(s)
Fungicides, Industrial , Fusarium , Metal Nanoparticles , Nanoparticles , Solanum lycopersicum , Ziziphus , Copper/pharmacology , Copper/chemistry , Antifungal Agents/pharmacology , Fungicides, Industrial/pharmacology , Metal Nanoparticles/chemistry , Oxides/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Polymers (Basel) ; 15(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904340

ABSTRACT

Owing to the remarkable antimicrobial potential of these materials, research into the possible use of nanomaterials as alternatives to fungicides in sustainable agriculture is increasingly progressing. Here, we investigated the potential antifungal properties of chitosan-decorated copper oxide nanocomposite (CH@CuO NPs) to control gray mold diseases of tomato caused by Botrytis cinerea throughout in vitro and in vivo trials. The nanocomposite CH@CuO NPs were chemically prepared, and size and shape were determined using Transmission Electron Microscope (TEM). The chemical functional groups responsible for the interaction of the CH NPs with the CuO NPs were detected using the Fourier Transform Infrared (FTIR) spectrophotometry. The TEM images confirmed that CH NPs have a thin and semitransparent network shape, while CuO NPs were spherically shaped. Furthermore, the nanocomposite CH@CuO NPs ex-habited an irregular shape. The size of CH NPs, CuO NPs and CH@CuO NPs as measured through TEM, were approximately 18.28 ± 2.4 nm, 19.34 ± 2.1 nm, and 32.74 ± 2.3 nm, respectively. The antifungal activity of CH@CuO NPs was tested at three concentrations of 50, 100 and 250 mg/L and the fungicide Teldor 50% SC was applied at recommended dose 1.5 mL/L. In vitro experiments revealed that CH@CuO NPs at different concentrations significantly inhibited the reproductive growth process of B. cinerea by suppressing the development of hyphae, spore germination and formation of sclerotia. Interestingly, a significant control efficacy of CH@CuO NPs against tomato gray mold was observed particularly at concentrations 100 and 250 mg/L on both detached leaves (100%) as well as the whole tomato plants (100%) when compared to the conventional chemical fungicide Teldor 50% SC (97%). In addition, the tested concentration 100 mg/L improved to be sufficient to guarantee a complete reduction in the disease's severity (100%) to tomato fruits from gray mold without any morphological toxicity. In comparison, tomato plants treated with the recommended dose 1.5 mL/L of Teldor 50% SC ensured disease reduction up to 80%. Conclusively, this research enhances the concept of agro-nanotechnology by presenting how a nano materials-based fungicide could be used to protect tomato plants from gray mold under greenhouse conditions and during the postharvest stage.

5.
Polymers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904433

ABSTRACT

Lignin, a naturally occurring biopolymer, is produced primarily as a waste product by the pulp and paper industries and burned to produce electricity. Lignin-based nano- and microcarriers found in plants are promising biodegradable drug delivery platforms. Here, we highlight a few characteristics of a potential antifungal nanocomposite consisting of carbon nanoparticles (C-NPs) with a defined size and shape containing lignin nanoparticles (L-NPs). Spectroscopic and microscopic studies verified that the lignin-loaded carbon nanoparticles (L-CNPs) were successfully prepared. Under in vitro and in vivo conditions, the antifungal activity of L-CNPs at various doses was effectively tested against a wild strain of F. verticillioides that causes maize stalk rot disease. In comparison to the commercial fungicide, Ridomil Gold SL (2%), L-CNPs introduced beneficial effects in the earliest stages of maize development (seed germination and radicle length). Additionally, L-CNP treatments promoted positive effects on maize seedlings, with a significant increment in the level of carotenoid, anthocyanin, and chlorophyll pigments for particular treatments. Finally, the soluble protein content displayed a favorable trend in response to particular dosages. Most importantly, treatments with L-CNPs at 100 and 500 mg/L significantly reduced stalk rot disease by 86% and 81%, respectively, compared to treatments with the chemical fungicide, which reduced the disease by 79%. These consequences are substantial considering the essential cellular function carried out by these special natural-based compounds. Finally, the intravenous L-CNPs treatments in both male and female mice that affected the clinical applications and toxicological assessments are explained. The results of this study suggest that L-CNPs are of high interest as biodegradable delivery vehicles and can be used to stimulate favorable biological responses in maize when administered in the recommended dosages, contributing to the idea of agro-nanotechnology by demonstrating their unique qualities as a cost-effective alternative compared to conventional commercial fungicides and environmentally benign nanopesticides for long-term plant protection.

6.
Front Microbiol ; 13: 1010332, 2022.
Article in English | MEDLINE | ID: mdl-36304949

ABSTRACT

Resveratrol (3,4,5-trihydroxystilbene) is a naturally occurring polyphenolic stilbene compound produced by certain plant species in response to biotic and abiotic factors. Resveratrol has sparked a lot of interest due to its unique structure and approved therapeutic properties for the prevention and treatment of many diseases such as neurological disease, cardiovascular disease, diabetes, inflammation, cancer, and Alzheimer's disease. Over the last few decades, many studies have focused on the production of resveratrol from various natural sources and the optimization of large-scale production. Endophytic fungi isolated from various types of grapevines and Polygonum cuspidatum, the primary plant sources of resveratrol, demonstrated intriguing resveratrol-producing ability. Due to the increasing demand for resveratrol, one active area of research is the use of endophytic fungi and metabolic engineering techniques for resveratrol's large-scale production. The current review addresses an overview of endophytic fungi as a source for production, as well as biosynthesis pathways and relevant genes incorporated in resveratrol biosynthesis. Various approaches for optimizing resveratrol production from endophytic fungi, as well as their bio-transformation and bio-degradation, are explained in detail.

7.
Front Microbiol ; 13: 1108733, 2022.
Article in English | MEDLINE | ID: mdl-36741894

ABSTRACT

The main goals of the present investigation were to develop O/W nanoemulsion fungicides based on cold-pressed Nigella sativa (black seed) oil to prevent Penicillium verrucosum infection of maize seeds and to test their antifungal activity against this fungus. Additionally, the effect of these nanoemulsions on plant physiological parameters was also investigated. Two nonionic surfactants namely Tween 20 and Tween 80 were used as emulsifying agents in these formulations. The effect of sonication time and surfactant type on the mean droplet size, polydispersity index (PDI), and zeta potential of the nanoemulsions were determined by dynamic light scattering (DLS). Results indicated that both sonication time and emulsifier type had pronounced effects on the stability of O/W nanoemulsions with a small particle size range (168.6-345.3 nm), acceptable PDI (0.181-0.353), and high zeta potential (-27.24 to -48.82 mV). Tween 20 showed superior stability compared to Tween 80 nanoemulsions. The in vitro results showed that complete inhibition of P. verrucosum-growth was obtained by 10_T80 and 10_T20 nanoemulsions at 100% concentration. All nanoemulsions had increment effects on maize seed germination by 101% in the case of 10_T20 and 10_T80 compared to untreated seeds or the chemical fungicide treatment. Nanoemulsions (10_T20 and 10_T80) were able to stimulate root and shoot length as compared to the fungicide treatment. Seed treatment with 10_T80 nanoemulsion showed the highest AI and protease activity by 75 and 70%, respectively, as compared to the infected control. The produced nanoemulsions might provide an effective protectant coating layer for the stored maize seeds.

8.
J Enzyme Inhib Med Chem ; 36(1): 2183-2198, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34602000

ABSTRACT

Pyrroles and its fused forms possess antimicrobial activities, they can easily interact with biomolecules of living systems. A series of substituted pyrroles, and its fused pyrimidines and triazines forms have been synthesised, all newly synthesised compound structures were confirmed by spectroscopic analysis. Generally, the compounds inhibited growth of some important human pathogens, the best effect was given by: 2a, 3c, 4d on Gram-positive bacteria and was higher on yeast (C. albicans), by 5c on Gram-negative bacteria and by 5a then 3c on filamentous fungi (A. fumigatus and F. oxysporum). Such results present good antibacterial and antifungal potential candidates to help overcome the global problem of antibiotic resistance and opportunistic infections outbreak. Compound 3c gave the best anti-phytopathogenic effect at a 50-fold lower concentration than Kocide 2000, introducing a safe commercial candidate for agricultural use. The effect of the compounds on DNA was monitored to detect the mode of action.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Pyrroles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...