Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Transplant ; 23(1): e13313, 2019 02.
Article in English | MEDLINE | ID: mdl-30475440

ABSTRACT

Primary hyperoxalurias are rare inborn errors of metabolism with deficiency of hepatic enzymes that lead to excessive urinary oxalate excretion and overproduction of oxalate which is deposited in various organs. Hyperoxaluria results in serious morbid-ity, end stage kidney disease (ESKD), and mortality if left untreated. Combined liver kidney transplantation (CLKT) is recognized as a management of ESKD for children with hyperoxaluria type 1 (PH1). This study aimed to report outcome of CLKT in a pediatric cohort of PH1 patients, through retrospective analysis of data of 8 children (2 girls and 6 boys) who presented by PH1 to Wadi El Nil Pediatric Living Related Liver Transplant Unit during 2001-2017. Mean age at transplant was 8.2 ± 4 years. Only three of the children underwent confirmatory genotyping. Three patients died prior to surgery on waiting list. The first attempt at CLKT was consecutive, and despite initial successful liver transplant, the girl died of biliary peritonitis prior to scheduled renal transplant. Of the four who underwent simultaneous CLKT, only two survived and are well, one with insignificant complications, and other suffered from abdominal Burkitt lymphoma managed by excision and resection anastomosis, four cycles of rituximab, cyclophosphamide, vincristine, and prednisone. The other two died, one due to uncontrollable bleeding within 36 hours of procedure, while the other died awaiting renal transplant after loss of renal graft to recurrent renal oxalosis 6 months post-transplant. PH1 with ESKD is a rare disease; simultaneous CLKT offers good quality of life for afflicted children. Graft shortage and renal graft loss to oxalosis challenge the outcome.


Subject(s)
Hyperoxaluria, Primary/surgery , Kidney Transplantation/methods , Liver Transplantation/methods , Child , Child, Preschool , Female , Follow-Up Studies , Graft Survival , Humans , Hyperoxaluria, Primary/mortality , Male , Retrospective Studies , Survival Rate , Treatment Outcome
2.
J Pediatr Genet ; 7(4): 150-157, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30464858

ABSTRACT

Background Mannose-binding lectin (MBL) is a component of innate immunity and is particularly important in neonates, in whom adaptive immunity has not yet completely developed. MBL deficiency and MBL2 gene polymorphisms are associated with an opsonization defect and have been associated with neonatal sepsis. Aim The aim of our study was to assess serum MBL levels and genotype MBL2 genes to determine whether they can serve as markers for predicting neonatal sepsis in neonatal intensive care units. Patients and Methods A case-control study was conducted with 114 neonates classified into two groups: the septic group included 64 neonates (41 preterm and 23 full-term infants), and the non-septic control group included 50 neonates (29 preterm and 21 full-term infants). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was used to genotype MBL2 gene exon 1 (rs1800450) and (rs1800451) SNPs. Enzyme-linked immunosorbent assay (ELISA) was used to measure MBL serum concentrations. Results The polymorphic genotypes BB and AC at codons 54 and 57, respectively, showed higher frequencies than the wild-type genotype (AA) (14.1% versus 12.9% and 28.1% versus 19.4% respectively) in both groups, and this difference was greater in the septic group than in the non-septic group; however, the differences did not reach statistical significance. The B and C allele frequencies were also higher in the septic group than in the non-septic group, but the differences did not reach statistical significance ( p = 0.282 and 0.394, respectively). The serum levels of MBL were significantly lower in the septic group than in the non-septic group ( p = 0.028). Conclusion This study found no association between MBL levels or MBL2 exon 1 genotypes or alleles and neonatal sepsis risk. Further studies with larger sample sizes are needed to determine the role of the MBL2 gene as a risk factor and early predictor of neonatal sepsis.

3.
Medicine (Baltimore) ; 95(37): e4837, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27631238

ABSTRACT

Metabolic bone disease of prematurity is a condition characterized by reduction in bone mineral content (osteopenia). It is a problem faced by very low birth weight (VLBW) infants because of lack of fetal mineralization during the last trimester. Our aim was to assess serum alkaline phosphatase (ALP) level as an early biomarker for osteopenia in premature infants and to estimate an optimal cutoff value of serum ALP at which osteopenia is detected radiologically in premature newborns.This prospective study was conducted on a cohort of 120 newborn infants of both sex of ≤34 weeks' gestational age and <1500 g birth weight. Two blood samples, from each infant on at least 2 consecutive weeks, were reported for calcium, phosphorus, and ALP. Evidence of osteopenia was evaluated radiologically by performing wrist/knee x-ray.Sixteen infants (13.3%) had evidence of osteopenia in x-ray, whereas 104 infants (86.7%) were nonosteopenic and all the osteopenic infants were <1000-g birth weight. Birth weight and gestational age were significantly inversely related to serum ALP levels. Both samples showed statistically significantly higher mean ALP level in osteopenic than nonosteopenics (P < 0.001, and P < 0.001 respectively). There was no constant value of serum ALP related to radiologic evidence of osteopenia. However, the optimal cutoff value of serum ALP at which osteopenia is detected is 500 IU/L with 100% sensitivity and 80.77% specificity.High levels of ALP can be considered a reliable biomarker to predict the status of bone mineralization and the need for radiological evaluation in premature infants particularly those <1000-g birth weight and <32 weeks' gestation.


Subject(s)
Alkaline Phosphatase/blood , Bone Diseases, Metabolic/congenital , Biomarkers/blood , Bone Diseases, Metabolic/blood , Female , Humans , Infant, Newborn , Infant, Premature , Infant, Very Low Birth Weight , Male , Prospective Studies
4.
J Adv Res ; 6(6): 1071-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26644944

ABSTRACT

Accelerated oxidative damage is one of the hallmarks in both sickle cell disease (SCD) and thalassemia major (TM). A decreased antioxidant level is found in both diseases. Our study was carried out to evaluate the variation in serum levels of Selenium and Vitamin E among a group of transfusion dependant Egyptian SCD and TM patients, further more to correlate these levels with iron overload status or transfusion requirements. A case-control study was conducted at the Cairo University Pediatric Hospital to assess the serum levels of Selenium using Atomic Absorption Spectrometer and Vitamin E using commercially available ELISA Kit in transfusion dependent children, 30 with beta thalassemia and 30 with SCD in a steady state aged from 6 to 18 years, these findings were compared to 30 age/sex matched healthy controls. Our results revealed a depleted antioxidants level in the studied group of Egyptian children with TM and SCD relative to healthy controls (P < 0.05). A significant positive correlation was found between Vitamin E levels and ferritin (r = 0.26, p = 0.047) in SCD and TM patients. Nonsignificant correlation was detected between serum Selenium and Vitamin E. Moreover, values of these antioxidants did not correlate with indices of hemolysis nor with those of inflammation in chronically transfused TM and SCD patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...