Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 112(3): 1372-1377, 2019 05 22.
Article in English | MEDLINE | ID: mdl-30805649

ABSTRACT

The diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), is one of the most important pests of cruciferous crops in Iran and is controlled mostly by fenvalerate. The susceptibility to fenvalerate was investigated for four populations of P. xylostella. Bioassay results indicated significant differences among the populations tested. The highest level of resistance to fenvalerate was obtained for the Khuzestan (Khz) population (resistance ratio = 9.5). Survival was suppressed by diethyl maleate, piperonylbutoxide, and triphenyl phosphate, which confirmed that resistance to fenvalerate is caused by glutathione S-transferases (GSTs), mixed function oxidases, and esterases, respectively. Up to 8.6-, 2-, 2.7-, and 1.75-fold increases in GSTs, esterase (α-naphthylacerate and ß-naphthyl acetate as substrate), and cytochrome P450 monooxygenases activities in resistant strains when compared with the susceptible one, were observed, respectively. The expression of six GST genes of P. xylostella including GSTs1, GSTe2, GSTe4, GSTo4, GSTd4, and GSTd5 were analyzed. The quantitative PCR analysis showed that three of the PxGSTs had the highest expression levels in the Khz population. Two of the GSTs (GSTd4 and PxGSTe2) exhibited highest expression level in both Khz and Alborz (Alb) populations. Therefore, PxGST genes were involved in fenvalerate resistance in P. xylostella. Overall, the mechanisms of insecticide resistance in diamondback moth populations in four regions of Iran were related to GST, esterase, and cytochrome P450 monooxygenase activities.


Subject(s)
Insecticides , Lepidoptera , Moths , Pyrethrins , Animals , Insecticide Resistance , Iran , Nitriles
2.
J Invertebr Pathol ; 121: 74-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25034227

ABSTRACT

Honeybees and bumblebees are the most important pollinators of agricultural crops. For this purpose honeybees and bumblebees are reared and transported. A pathogen-free status of bees in general, is crucial. Indeed anthropogenic transports of hosts carrying parasites could alter the natural host/pathogen association, inducing an extra pathogenic stress. Therefore the creation of a pathogen-free rearing environment is needed. For bumblebees this is possible, as these species are reared in a closed environment. Although, a link remains between reared bumblebees and the outside bee community, as honeybee-collected pollen is essential food for bumblebee mass rearing. Here we evaluated if gamma irradiation can minimize the risk of this potential route of exposure and can inactivate viral particles present in honeybee-collected pollen. We show that 16.9kGy gamma irradiation induced a 100-1000 fold reduction on the ability of IAPV to cause mortality after injections. This result opens avenues toward rearing pathogen-free bumblebees and towards eliminating the risks of pathogen spillover to native wild bee species.


Subject(s)
Bees/virology , Dicistroviridae/radiation effects , Gamma Rays , Pollen/radiation effects , Animals , Food Irradiation , Specific Pathogen-Free Organisms
3.
Ecotoxicology ; 20(2): 447-56, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21253836

ABSTRACT

Perfluorinated organic chemicals like perfluorooctane sulfonic acid (PFOS) are persistent environmental pollutants that have been measured in a great diversity of wildlife worldwide, especially in the aquatic compartment. However, little information is available on the presence and effects of PFOS in the terrestrial compartment. Therefore, we investigated in this project the risks for effects, bioaccumulation and potential mechanisms of activity of PFOS in the bumblebee Bombus terrestris L. (Hymenoptera: Apidae) that is an important worldwide pollinator in the terrestrial compartment of wildflowers and cultivated crops. The exposure to PFOS occurred orally via the drinking of treated sugar water in a wide range from 1 µg/l up to 10 mg/l, containing environmentally relevant as well as high concentrations, and this was done with use of microcolonies of B. terrestris in the laboratory. A chronic toxicity assay demonstrated high bumblebee worker mortality (up to 100%) with an LC(50) of 1.01 mg/l (R(2) = 0.98). In addition, PFOS posed strong detrimental reproductive effects, and these concerted with a dramatic reduction in ovarian size. HPLC-MS demonstrated a bioaccumulation factor of 27.9 for PFOS in bumblebee workers fed with sugar water containing 100 µg/l PFOS during 5 weeks (2184 ± 365 ng/g BW). Finally, potential mechanisms of activity were investigated to explain the significant impact of PFOS on survival and reproduction capacity of B. terrestris. Exposure of bumblebee workers to PFOS resulted in a significant decrease in mitochondrial electron transport activity (p = 0.035) and lipid amounts (p = 0.019), while the respective p-values were 0.58 and 0.12 for protein and glucose amounts. Hence, addition of PFOS to ecdysteroid responsive Drosophila melanogaster S2 cells resulted in a strong antagonistic action on the EcR-b.act.luc reporter construct, demonstrating that PFOS may exert its effects partially through an endocrine disrupting action via the insect molting hormone or ecdysteroid receptor.


Subject(s)
Alkanesulfonic Acids/toxicity , Bees/drug effects , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Animals , Bees/metabolism , Electron Transport/drug effects , Feeding Behavior/drug effects , Pollination/drug effects , Reproduction/drug effects
4.
J Insect Physiol ; 56(12): 1973-85, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20816975

ABSTRACT

Methoxyfenozide (RH-2485) is a non-steroidal ecdysteroid agonist with a dibenzoylhydrazine structure, representing a group used as novel biorational insecticides in the control of insect pests. Here we report on the selection of Drosophila melanogaster S2 cells for resistance to inhibition of cell proliferation by methoxyfenozide by ∼ 1000-fold over 4 months. Cells were exposed to gradually increasing concentrations of methoxyfenozide and selected out based on the ecdysteroid-sensitive response for cell proliferation. In the resistant cells, the ecdysteroid receptor (EcR/USP) complex was no longer active in the presence of methoxyfenozide. But when resistant cells were relaxed from pressure in methoxyfenozide-free medium, induction of the reporter construct was observed. In parallel, EcR/USP functionality was also restored when resistant cells were rescued by a Drosophila EcR plasmid. However, it was striking that in the resistant cells the ecdysteroid-sensitive response for cell proliferation was not restored upon methoxyfenozide withdrawal, indicating permanent changes in the physiology of the cells during selection. To investigate changes in gene expression caused by inactivation of the EcR/USP complex in resistant cells, Drosophila oligo 14kv1 microarrays were used and probed with cDNAs from resistant cells in the presence and absence of ecdysone agonist on one hand and from unselected sensitive cells on the other hand. A selection of 324 differentially expressed genes was assigned covering diverse functions as transport, enzyme activity, cytoskeleton organization, cell cycle machinery, transcription/translation and ecdysteroid signaling. Besides the identification of (primary and secondary) target genes of the EcR/USP signaling pathway, this analysis also allows to gain insights into the mechanism of resistance and on the crosstalk between ecdysteroid signaling and cell proliferation-linked processes.


Subject(s)
Drosophila melanogaster/metabolism , Ecdysone/metabolism , Hydrazines , Insecticide Resistance , Insecticides , Juvenile Hormones , Animals , Cell Line , Cell Proliferation/drug effects , Gene Expression Profiling , Linear Models , Oligonucleotide Array Sequence Analysis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Steroid/biosynthesis , Receptors, Steroid/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Transfection
5.
Pest Manag Sci ; 66(5): 526-35, 2010 May.
Article in English | MEDLINE | ID: mdl-20069627

ABSTRACT

BACKGROUND: Dibenzoylhydrazine analogues have been developed successfully as a new group of insect growth regulators, called ecdysone agonists or moulting accelerating compounds. A notable feature is their high activity against lepidopteran insects, raising the question as to whether species-specific analogues can be isolated. In this study, the specificity of ecdysone agonists was addressed through a comparative analysis in two important lepidopterans, the silkworm Bombyx mori L. and the cotton leafworm Spodoptera littoralis (Boisd.). RESULTS: When collections of non-steroidal ecdysone agonists containing different mother structures (dibenzoylhydrazine, acylaminoketone, tetrahydroquinoline) were tested, in vitro reporter assays showed minor differences using cell lines derived from both species. However, when compounds with high ecdysone agonist activity were examined in toxicity assays, larvicidal activity differed considerably. Of note was the identification of three dibenzoylhydrazine analogues with > 100-fold higher activity against Bombyx than against Spodoptera larvae. CONCLUSION: The present study demonstrated that species-specific ecdysone-agonist-based insecticides can be developed, but their species specificity is not based on differences in the activation of the ecdysone receptor but rather on unidentified in vivo parameters such as permeability of the cuticle, uptake/excretion by the gut or metabolic detoxification.


Subject(s)
Bombyx/drug effects , Genes, Reporter/genetics , Juvenile Hormones/toxicity , Molting/drug effects , Spodoptera/drug effects , Toxicity Tests/methods , Animals , Bombyx/metabolism , Cell Line , Ecdysone/agonists , Ecdysone/antagonists & inhibitors , Hydrazines/toxicity , Larva/drug effects , Receptors, Steroid/metabolism , Species Specificity , Spodoptera/metabolism
6.
Pest Manag Sci ; 65(7): 732-6, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19367570

ABSTRACT

BACKGROUND: Methoxyfenozide is a lepidopteran-specific insecticide that belongs to a new group of insecticides, the non-steroidal ecdysteroid agonists, also called moulting accelerating compounds (MACs). To investigate the risk of resistance and possible mechanisms conferring resistance to methoxyfenozide, the authors selected in the laboratory for a resistant strain of the cotton leafworm Spodoptera littoralis (Boisd.), which is a representative lepidopteran model and an important pest in cotton and vegetables worldwide, with a high risk for resistance development. RESULTS: After selection with methoxyfenozide during 13 generations, toxicity data showed that the selected strain developed fivefold resistance to methoxyfenozide in comparison with the susceptible strain. Measurement of the detoxification enzymes demonstrated that the monooxygenase (MO) activity was 2.1 times higher in the selected strain, whereas there was no change for esterases and glutathione-S-transferases. When the inhibitors piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate were tested as synergists, the respective synergistic ratios were 0.97, 0.96 and 1.0 for the susceptible strain, and 2.2, 0.96 and 1.1 for the resistant strain. The significant synergistic effect by PBO concurs with the increased MO activity in the selected strain. CONCLUSION: Taken overall, the present study supports the importance of MO-mediated metabolism in resistance to methoxyfenozide, directing tactics to fight against resistance development for this novel group of insecticides.


Subject(s)
Hydrazines/pharmacology , Insecticide Resistance , Insecticides/pharmacology , Juvenile Hormones/pharmacology , Spodoptera/drug effects , Animals , Esterases/genetics , Esterases/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Gossypium/parasitology , Insect Proteins/genetics , Insect Proteins/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Plant Diseases/parasitology , Spodoptera/enzymology , Spodoptera/physiology
7.
Insect Biochem Mol Biol ; 38(9): 825-33, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18675909

ABSTRACT

Although dibenzoylhydrazine-type non-steroidal ecdysone agonists such as methoxyfenozide (RH-2485) have an excellent performance record, the emergence of resistance could severely compromise the efficacy of these compounds in integrated pest management programs. To investigate possible mechanisms of resistance, cell lines derived from the polyphagous noctuid pest Spodoptera exigua (Se4 cells) were selected for continuous growth in the presence of high concentrations of 20-hydroxyecdysone (20E) or methoxyfenozide. Here we describe an analysis of ecdysteroid receptor signaling in the ecdysteroid-resistant Se4 cell lines. In contrast to other ecdysteroid-resistant cell lines described in literature, our data support the existence of a normal functioning ecdysteroid receptor complex in the resistant Se4 cell lines: (1) using a recombinant BmNPV baculovirus as a transduction tool, activation of an ecdysone-responsive luciferase cassette was demonstrated; (2) the early gene HR3 is constitutively expressed in the resistant cell lines that are grown in the presence of 20E or methoxyfenozide. Quantitative RT-PCR experiments indicated that expression levels of SeEcR mRNA were comparable among sensitive and resistant cell lines. Sequencing of PCR fragments also revealed the presence of SeEcR mRNA with a wild-type ligand-binding domain in resistant cells. Finally, a possible role for the gene FTZ-F1, whose expression correlates with the absence of circulating ecdysteroids during insect development, in the resistance mechanism was investigated. However, it was observed that FTZ-F1, in contrast to what is observed during insect development, is constitutively expressed in Se4 cells and that its expression is not regulated by the addition of ecdysteroid. It is proposed that the resistance mechanism in Se4 cells resides at the coupling between the conserved hierarchical cascade of early and early-late gene expression and the differentiation program in the Se4 cell line. The use of insect cell lines for the investigation of resistance against dibenzoylhydrazine ecdysone agonists and their relevance for uncovering resistance mechanisms in insects during pest control programs is discussed.


Subject(s)
Ecdysteroids/metabolism , Receptors, Steroid/metabolism , Signal Transduction , Spodoptera/metabolism , Steroidogenic Factor 1/metabolism , Amino Acid Sequence , Animals , Cell Line , DNA-Binding Proteins/metabolism , Drosophila Proteins , Gene Expression , Genes, Reporter , Molecular Sequence Data , Protein Interaction Domains and Motifs , RNA, Messenger/metabolism , Receptors, Steroid/genetics , Spodoptera/genetics , Steroidogenic Factor 1/genetics , Transcription Factors/metabolism
8.
J Insect Physiol ; 54(2): 429-38, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18093613

ABSTRACT

During insect development, ecdysteroids and juvenile hormones (JHs) interact to regulate larval growth, metamorphosis and reproduction but the molecular mechanisms by which both hormones influence each other's activity remain unknown. Because of their ease of use and straightforward genetic manipulation, insect cell lines often have been used to clarify the actions and interactions of hormones at the molecular level. Here we report on the use of two insect culture cell lines, Drosophila melanogaster S2 and Bombyx mori Bm5 cells, to investigate two molecular processes in which ecdysteroids and JH have been shown to interact: (1) direct modulation of the activity of the ecdysteroid receptor transcription complex and (2) interference at the level of induction of the primary gene E75. Our data do not support JH analogs (JHAs) acting through the above processes: 'antagonism' of ecdysteroid receptor activity by JHAs correlated with cytotoxicity and induction of E75 expression by JHAs was not demonstrated. However, we confirm previous studies in which it was observed that methoprene can partially reverse the growth inhibition by 20E in S2 cells (but not Bm5 cells). Therefore, the molecular mechanism by which both hormones influence each other's activity to regulate cell growth in S2 cells remains unknown.


Subject(s)
Bombyx/cytology , Bombyx/drug effects , Drosophila melanogaster/cytology , Drosophila melanogaster/drug effects , Juvenile Hormones/agonists , Juvenile Hormones/antagonists & inhibitors , Receptors, Steroid/metabolism , Animals , Cell Line , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Drosophila Proteins , Humans , Insecticides/pharmacology , Methoprene/pharmacology , Phenylcarbamates/pharmacology , Protein Isoforms , Receptors, Steroid/chemistry , Transcription Factors/metabolism
9.
Arch Insect Biochem Physiol ; 67(1): 36-49, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18044724

ABSTRACT

In this report with an ecdysteroid-responsive cell line of the beet armyworm, Spodoptera exigua (Se4) selection for resistance against methoxyfenozide and the insect moulting hormone (20-hydroxyecdysone, 20E) was carried out to analyze the resulting resistant cells in order to elucidate possible mechanisms of resistance towards these compounds. From these cultures, five methoxyfenozide- and four 20E-resistant subclones were selected starting from 0.1 nM methoxyfenozide up to 100 microM and from 10 nM 20E up to 100 microM, respectively. To date, the selected cells kept their loss of susceptibility for 100 microM. Here we evaluated two processes known to be important in insecticide resistance, namely metabolism and pharmacokinetics, in the selected methoxyfenozide- and 20E-resistant subclones. Synergism experiments with piperonyl butoxide, S,S,S-tributyl phosphorotrithioate, and diethyl maleate, which are respective inhibitors of monooxygenases, esterases, and gluthation-S-transferases, did not affect the level of the resistance. To check the possible existence of active transport in the resistant cells, we used ouabain, an inhibitor of active membrane transport. In parallel, the absorption profile was studied in resistant and susceptible cells with use of 14C-methoxyfenozide. Interestingly, resistant subclones showed cross-resistance towards methoxyfenozide and 20E. The resistance was irreversible even after the compounds were removed from the medium.


Subject(s)
Ecdysterone/pharmacology , Hydrazines/pharmacology , Insecticide Resistance , Juvenile Hormones/pharmacology , Spodoptera/cytology , Spodoptera/drug effects , Animals , Cell Line , Ecdysteroids/agonists , Insecticides/pharmacology , Membrane Transport Proteins/drug effects , Ouabain/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...