Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
APL Bioeng ; 6(2): 026102, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35540726

ABSTRACT

Ureteric stents are clinically deployed to restore urinary drainage in the presence of ureteric occlusions. They consist of a hollow tube with multiple side-holes that enhance urinary drainage. The stent surface is often subject to encrustation (induced by crystals-forming bacteria such as Proteus mirabilis) or particle accumulation, which may compromise stent's drainage performance. Limited research has, however, been conducted to evaluate the relationship between flow dynamics and accumulation of crystals in stents. Here, we employed a full-scale architecture of the urinary system to computationally investigate the flow performance of a ureteric stent and experimentally determine the level of particle accumulation over the stent surface. Particular attention was given to side-holes, as they play a pivotal role in enhancing urinary drainage. Results demonstrated that there exists an inverse correlation between wall shear stress (WSS) and crystal accumulation at side-holes. Specifically, side-holes with greater WSS levels were those characterized by inter-compartmental fluid exchange between the stent and ureter. These "active" side-holes were located either nearby ureteric obstructions or at regions characterized by a physiological constriction of the ureter. Results also revealed that the majority of side-holes (>60%) suffer from low WSS levels and are, thus, prone to crystals accumulation. Moreover, side-holes located toward the proximal region of the ureter presented lower WSS levels compared to more distal ones, thus suffering from greater particle accumulation. Overall, findings corroborate the role of WSS in modulating the localization and extent of particle accumulation in ureteric stents.

2.
Infect Drug Resist ; 12: 129-135, 2019.
Article in English | MEDLINE | ID: mdl-30643441

ABSTRACT

INTRODUCTION: Acinetobacter baumannii is a gram-negative,opportunistic pathogen responsible for resistant nosocomial infections especially in the intensive care units (ICUS).One reason for the failure in the treatment of A. baumannii is its ability of develop resistance against several antimicrobials. combination of different antimicrobials can be used to overcome such a resistance. This study was done to evaluate the in vitro synergistic activity of colistin in combination with six different antimicrobials, including ciprofloxacin, levofloxacin, imipenem, meropenem, ampicillin-sulbactam, and rifampin against A. baumannii species isolated from blood culture of patients admitted to ICUs of Nemazee hospital, Shiraz, Iran. METHOD: After performing biochemical identification assays on 20 isolates of A. baumannii, minimum inhibitory concentrations were determined by E- test method and antibiotic interactions were assessed using broth microdilution checkerboard method. RESULTS: Combinations of colistin with all six studied antimicrobials had some synergistic effect. CONCLUSION: clinical studies are required to clarify the therapeutic potential of these antimicrobial combinations.

SELECTION OF CITATIONS
SEARCH DETAIL
...