Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 903: 166567, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37633375

ABSTRACT

The bioavailability of essential and non-essential elements in vegetation is expected to influence the performance of free-ranging terrestrial herbivores. However, attempts to relate the use of geochemical landscapes by animal populations directly to reproductive output are currently lacking. Here we measured concentrations of 14 essential and non-essential elements in soil and vegetation samples collected in the Zackenberg valley, northeast Greenland, and linked these to environmental conditions to spatially predict and map geochemical landscapes. We then used long-term (1996-2021) survey data of muskoxen (Ovibos moschatus) to quantify annual variation in the relative use of essential and non-essential elements in vegetated sites and their relationship to calf recruitment the following year. Results showed that the relative use of the geochemical landscape by muskoxen varied substantially between years and differed among elements. Selection for vegetated sites with higher levels of the essential elements N, Cu, Se, and Mo was positively linked to annual calf recruitment. In contrast, selection for vegetated sites with higher concentrations of the non-essential elements As and Pb was negatively correlated to annual calf recruitment. Based on the concentrations measured in our study, we found no apparent associations between annual calf recruitment and levels of C, Mn, Co, Zn, Cd, Ba, Hg, and C:N ratio in the vegetation. We conclude that the spatial distribution and access to essential and non-essential elements are important drivers of reproductive output in muskoxen, which may also apply to other wildlife populations. The value of geochemical landscapes to assess habitat-performance relationships is likely to increase under future environmental change.

2.
Rapid Commun Mass Spectrom ; 37(6): e9470, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36601893

ABSTRACT

RATIONALE: Analysis of stable isotopes in tissue and excreta may provide information about animal diets and their nutritional state. As body condition may have a major influence on reproduction, linking stable isotope values to animal demographic rates may help unravel the drivers behind animal population dynamics. METHODS: We performed sequential analysis of δ15 N values in guard hair from 21 muskoxen (Ovibos moschatus) from Zackenberg in high arctic Greenland. We were able to reconstruct the dietary history for the population over a 5-year period with contrasting environmental conditions. We examined the linkage between guard hair δ15 N values in 12 three-month periods and muskox calf recruitment to detect critical periods for muskox reproduction. Finally, we conducted similar analyses of the correlation between environmental conditions (snow depth and air temperature) and calf recruitment. RESULTS: δ15 N values exhibited a clear seasonal pattern with high levels in summer and low levels in winter. However, large inter-annual variation was found in winter values, suggesting varying levels of catabolism depending on snow conditions. In particular δ15 N values during January-March were linked to muskox recruitment rates, with higher values coinciding with lower calf recruitment. δ15 N values were a better predictor of muskox recruitment rates than environmental conditions. CONCLUSIONS: Although environmental conditions may ultimately determine the dietary δ15 N signal in muskox guard hairs, muskox calf recruitment was more strongly correlated with δ15 N values than ambient snow and temperature. The period January-March, corresponding to late gestation, appears particularly critical for muskox reproduction.


Subject(s)
Diet , Ruminants , Animals , Pregnancy , Female , Arctic Regions , Hair , Nutritional Status
3.
PLoS One ; 17(6): e0269441, 2022.
Article in English | MEDLINE | ID: mdl-35763458

ABSTRACT

Trace mineral imbalances can have significant effects on animal health, reproductive success, and survival. Monitoring their status in wildlife populations is, therefore, important for management and conservation. Typically, livers and kidneys are sampled to measure mineral status, but biopsies and lethal-sampling are not always possible, particularly for Species at Risk. We aimed to: 1) determine baseline mineral levels in Northern Mountain caribou (Rangifer tarandus caribou; Gmelin, 1788) in northwestern British Columbia, Canada, and 2) determine if hair can be used as an effective indicator of caribou mineral status by evaluating associations between hair and organ mineral concentrations. Hair, liver, and kidney samples from adult male caribou (nHair = 31; nLiver, nKidney = 43) were collected by guide-outfitters in 2016-2018 hunting seasons. Trace minerals and heavy metals were quantified using inductively-coupled plasma mass spectrometry, and organ and hair concentrations of same individuals were compared. Some organ mineral concentrations differed from other caribou populations, though no clinical deficiency or toxicity symptoms were reported in our population. Significant correlations were found between liver and hair selenium (rho = 0.66, p<0.05), kidney and hair cobalt (rho = 0.51, p<0.05), and liver and hair molybdenum (rho = 0.37, p<0.10). These findings suggest that hair trace mineral assessment may be used as a non-invasive and easily-accessible way to monitor caribou selenium, cobalt, and molybdenum status, and may be a valuable tool to help assess overall caribou health.


Subject(s)
Reindeer , Selenium , Trace Elements , Animals , British Columbia , Cobalt , Forests , Hair , Male , Molybdenum
4.
Sci Total Environ ; 827: 153877, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35218841

ABSTRACT

Grazing herbivores may affect soil microbial communities indirectly by impacting soil structure and vegetation composition. In high arctic environments, this impact is poorly elucidated, while having potentially wide-reaching effects on the ecosystem. This study examines how a key arctic herbivore, the muskox Ovibos moschatus, affects the soil microbial community in a high arctic fen. Environmental DNA was extracted from soil samples taken from grazed control plots and from muskox exclosures established 5 years prior. We sequenced amplicons of the 16S rRNA gene to provide insight into the microbial communities. We found that in the grazed control plots, microbial communities exhibited high evenness and displayed highly similar overall diversity. In plots where muskoxen had been excluded, microbial diversity was significantly reduced, and had more uneven intra-sample populations and overall lower ecological richness and evenness. We observed that the composition of microbial communities in grazed soils were significantly affected by the presence of muskoxen, as seen by elevated relative abundances of Bacteroides and Firmicutes, two major phyla found in muskox faeces. Furthermore, an increase in relative abundance of bacteria involved in degradation of recalcitrant carbohydrates and cycling of nitrogen was observed in grazed soil. Ungrazed soils displayed increased abundances of bacteria potentially involved in anaerobic oxidation of methane, whereas some methanogens were more abundant in grazed soils. This corroborates a previous finding that methane emissions are higher in arctic fens under muskox grazing. Our results show that the presence of large herbivores stimulates soil microbial diversity and has a homogenizing influence on the inter-species dynamics in soil microbial communities. The findings of this study, thus, improve our understanding of the effect of herbivore grazing on arctic ecosystems and the derived methane cycling.


Subject(s)
Microbiota , Soil , Animals , Bacteria/metabolism , Methane/metabolism , RNA, Ribosomal, 16S/genetics , Ruminants , Soil/chemistry , Soil Microbiology
5.
Sci Rep ; 10(1): 1514, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001737

ABSTRACT

For free-ranging animals living in seasonal environments, hypometabolism (lowered metabolic rate) and hypothermia (lowered body temperature) can be effective physiological strategies to conserve energy when forage resources are low. To what extent such strategies are adopted by large mammals living under extreme conditions, as those encountered in the high Arctic, is largely unknown, especially for species where the gestation period overlaps with the period of lowest resource availability (i.e. winter). Here we investigated for the first time the level to which high arctic muskoxen (Ovibos moschatus) adopt hypothermia and tested the hypothesis that individual plasticity in the use of hypothermia depends on reproductive status. We measured core body temperature over most of the gestation period in both free-ranging muskox females in Greenland and captive female muskoxen in Alaska. We found divergent overwintering strategies according to reproductive status, where pregnant females maintained stable body temperatures during winter, while non-pregnant females exhibited a temporary decrease in their winter body temperature. These results show that muskox females use hypothermia during periods of resource scarcity, but also that the use of this strategy may be limited to non-reproducing females. Our findings suggest a trade-off between metabolically-driven energy conservation during winter and sustaining foetal growth, which may also apply to other large herbivores living in highly seasonal environments elsewhere.


Subject(s)
Hypothermia/metabolism , Reproduction/physiology , Ruminants/physiology , Alaska , Animals , Arctic Regions , Body Temperature , Female , Greenland , Herbivory , Pregnancy , Seasons
6.
Ambio ; 49(3): 805-819, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31187429

ABSTRACT

Muskoxen (Ovibos moschatus) are an integral component of Arctic biodiversity. Given low genetic diversity, their ability to respond to future and rapid Arctic change is unknown, although paleontological history demonstrates adaptability within limits. We discuss status and limitations of current monitoring, and summarize circumpolar status and recent variations, delineating all 55 endemic or translocated populations. Acknowledging uncertainties, global abundance is ca 170 000 muskoxen. Not all populations are thriving. Six populations are in decline, and as recently as the turn of the century, one of these was the largest population in the world, equaling ca 41% of today's total abundance. Climate, diseases, and anthropogenic changes are likely the principal drivers of muskox population change and result in multiple stressors that vary temporally and spatially. Impacts to muskoxen are precipitated by habitat loss/degradation, altered vegetation and species associations, pollution, and harvest. Which elements are relevant for a specific population will vary, as will their cumulative interactions. Our summaries highlight the importance of harmonizing existing data, intensifying long-term monitoring efforts including demographics and health assessments, standardizing and implementing monitoring protocols, and increasing stakeholder engagement/contributions.


Subject(s)
Ecosystem , Ruminants , Animals , Arctic Regions , Biodiversity , Uncertainty
7.
J Zoo Wildl Med ; 49(4): 856-862, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30592918

ABSTRACT

Immobilizing and handling large, free-ranging animals without proper facilities in harsh environmental conditions poses significant challenges. During two field expeditions, a total of 29 female muskoxen ( Ovibos moschatus) were immobilized in Northeast Greenland (74°N, 20°E). Fixed doses of immobilizing drugs were used regardless of animal size: 2 mg etorphine, 30 mg xylazine, 0.3 mg medetomidine, and 40 mg ketamine. Physiologic and behavioral monitoring was performed during the second expedition on 15 female muskoxen. The observed heart rates were 35-58 beats/min and respiratory rates were 25-30 breaths/min. Mean arterial pressures measured using oscillometry ranged between 117-142 mmHg. Pulse oximeter readings ranged from 91-98% with oxygen supplementation, nasal end-tidal carbon dioxide values were 24-42 mmHg, and rectal temperature ranged from 38.9-39.6°C. Induction time was 6-8 min, recovery time 2-6 min after reversal, and duration of anesthesia was 50-100 min. This anesthetic regime thus provided reliable immobilization with minimal pathophysiologic alterations.


Subject(s)
Anesthesia/veterinary , Hypnotics and Sedatives/administration & dosage , Immobilization/veterinary , Ruminants/physiology , Anesthesia/methods , Animals , Arctic Regions , Etorphine/administration & dosage , Female , Greenland , Immobilization/methods , Ketamine/administration & dosage , Medetomidine/administration & dosage , Xylazine/administration & dosage
8.
J Zoo Wildl Med ; 49(3): 798-801, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30212318

ABSTRACT

Pregnancy-associated glycoproteins (PAGs) are expressed by the ruminal placenta, making their detection in blood an accurate indicator of pregnancy. This study aimed to evaluate two commercially available PAG enzyme-linked immunosorbent assays (ELISAs) in muskoxen ( Ovibos moschatus). The two tests are based on the same principles; however, one is evaluated photometrically and the other visually. Sixteen samples covering all trimesters of pregnancy, and 16 nonpregnant samples were included to evaluate test performance. Both tests reliably detected pregnancy. The photometric ELISA showed a sensitivity and specificity of 94% and 100%, respectively. Although the visual ELISA depends on somewhat subjective interpretations, it came up with a sensitivity of 81% and a specificity of 100%, and might thus provide a useful in-house tool when limited laboratory equipment is available. Analysis of additional samples showed consistent results during pregnancy and circulating PAGs for at least 18 days postpartum.


Subject(s)
Glycoproteins/blood , Pregnancy Proteins/blood , Ruminants/blood , Animals , Enzyme-Linked Immunosorbent Assay/methods , Female , Pregnancy , Reproducibility of Results , Sensitivity and Specificity
9.
Microorganisms ; 6(3)2018 Jul 25.
Article in English | MEDLINE | ID: mdl-30044373

ABSTRACT

Muskoxen (Ovibos moschatus) are ruminants adapted to a high-fibre diet. There is increasing interest in the role that gut microbes play in the digestion and utilization of these specialized diets but only limited data available on the gut microbiome of high-Arctic animals. In this study, we metabarcoded the 16S rRNA region of faecal samples from muskoxen of Northeast Greenland, Northwest Greenland and Norway, and quantified the effects of physiological and temporal factors on bacterial composition. We found significant effects of body mass, year of sampling and location on the gut bacterial communities of North East Greenland muskoxen. These effects were however dwarfed by the effects of location, emphasizing the importance of the local ecology on the gut bacterial community. Habitat alterations and rising temperatures may therefore have a considerable impact on muskoxen health and reproductive success. Moreover, muskoxen are hunted and consumed in Greenland, Canada and Alaska; therefore, this study also screened for potential zoonoses of food safety interest. A total of 13 potentially zoonotic genera were identified, including the genera Erysipelothrix and Yersinia implicated in recent mass die-offs of the muskoxen themselves.

10.
Biol Lett ; 14(5)2018 05.
Article in English | MEDLINE | ID: mdl-29743265

ABSTRACT

Mammal herbivores may exert strong impacts on plant communities, and are often key drivers of vegetation composition and diversity. We tested whether such mammal-induced changes to a high Arctic plant community are reflected in the structure of other trophic levels. Specifically, we tested whether substantial vegetation changes following the experimental exclusion of muskoxen (Ovibos moschatus) altered the composition of the arthropod community and the predator-prey interactions therein. Overall, we found no impact of muskox exclusion on the arthropod community: the diversity and abundance of both arthropod predators (spiders) and of their prey were unaffected by muskox presence, and so was the qualitative and quantitative structure of predator-prey interactions. Hence, high Arctic arthropod communities seem highly resistant towards even large biotic changes in their habitat, which we attribute to the high connectance in the food web.


Subject(s)
Ecosystem , Predatory Behavior , Spiders/physiology , Animals , Arctic Regions , Arthropods , Biodiversity , DNA Barcoding, Taxonomic , Food Chain , Greenland , Herbivory , Ruminants
11.
Oecologia ; 187(3): 689-699, 2018 07.
Article in English | MEDLINE | ID: mdl-29700632

ABSTRACT

Snow may prevent Arctic herbivores from accessing their forage in winter, forcing them to aggregate in the few patches with limited snow. In High Arctic Greenland, Arctic hare and rock ptarmigan often forage in muskox feeding craters. We therefore hypothesized that due to limited availability of forage, the dietary niches of these resident herbivores overlap considerably, and that the overlap increases as winter progresses. To test this, we analyzed fecal samples collected in early and late winter. We used molecular analysis to identify the plant taxa consumed, and stable isotope ratios of carbon and nitrogen to quantify the dietary niche breadth and dietary overlap. The plant taxa found indicated only limited dietary differentiation between the herbivores. As expected, dietary niches exhibited a strong contraction from early to late winter, especially for rock ptarmigan. This may indicate increasing reliance on particular plant resources as winter progresses. In early winter, the diet of rock ptarmigan overlapped slightly with that of muskox and Arctic hare. Contrary to our expectations, no inter-specific dietary niche overlap was observed in late winter. This overall pattern was specifically revealed by combined analysis of molecular data and stable isotope contents. Hence, despite foraging in the same areas and generally feeding on the same plant taxa, the quantitative dietary overlap between the three herbivores was limited. This may be attributable to species-specific consumption rates of plant taxa. Yet, Arctic hare and rock ptarmigan may benefit from muskox opening up the snow pack, thereby allowing them to access the plants.


Subject(s)
Herbivory , Snow , Animals , Arctic Regions , Diet , Seasons
12.
Ambio ; 46(Suppl 1): 12-25, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28116681

ABSTRACT

How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes in environmental conditions. Thirdly, biotic interactions within a trophic level may affect other trophic levels, in some cases ultimately affecting land-atmosphere feedbacks. Finally, differential responses to environmental change may decouple interacting species. These insights form Zackenberg emphasize that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems.


Subject(s)
Climate Change , Ecological Parameter Monitoring , Food Chain , Animals , Arctic Regions , Arthropods/physiology , Birds/physiology , Feeding Behavior , Greenland , Pollination , Population Density , Population Dynamics , Species Specificity
13.
PLoS One ; 11(4): e0152874, 2016.
Article in English | MEDLINE | ID: mdl-27097032

ABSTRACT

The nutritional state of animals is tightly linked to the ambient environment, and for northern ungulates the state strongly influences vital population demographics, such as pregnancy rates. Continuously growing tissues, such as hair, can be viewed as dietary records of animals over longer temporal scales. Using sequential data on nitrogen stable isotopes (δ15N) in muskox guard hairs from ten individuals in high arctic Northeast Greenland, we were able to reconstruct the dietary history of muskoxen over approximately 2.5 years with a high temporal resolution of app. 9 days. The dietary chronology included almost three full summer and winter periods. The diet showed strong intra- and inter-annual seasonality, and was significantly linked to changes in local environmental conditions (temperature and snow depth). The summer diets were highly similar across years, reflecting a graminoid-dominated diet. In contrast, winter diets were markedly different between years, a pattern apparently linked to snow conditions. Snow-rich winters had markedly higher δ15N values than snow-poor winters, indicating that muskoxen had limited access to forage, and relied more heavily on their body stores. Due to the close link between body stores and calf production in northern ungulates, the dietary winter signals could eventually serve as an indicator of calf production the following spring. Our study opens the field for further studies and longer chronologies to test such links. The method of sequential stable isotope analysis of guard hairs thus constitutes a promising candidate for population-level monitoring of animals in remote, arctic areas.


Subject(s)
Artiodactyla , Diet , Hair/chemistry , Animals , Buttocks , Nitrogen Isotopes/analysis , Seasons
14.
PLoS One ; 8(12): e81694, 2013.
Article in English | MEDLINE | ID: mdl-24324718

ABSTRACT

Most ecological networks are analysed as static structures, where all observed species and links are present simultaneously. However, this is over-simplified, because networks are temporally dynamical. We resolved an arctic, entire-season plant-flower visitor network into a temporal series of 1-day networks and compared the properties with its static equivalent based on data pooled over the entire season. Several properties differed. The nested link pattern in the static network was blurred in the dynamical version, because the characteristic long nestedness tail of flower-visitor specialists got stunted in the dynamical networks. This tail comprised a small food web of pollinators, parasitoids and hyper-parasitoids. The dynamical network had strong time delays in the transmission of direct and indirect effects among species. Twenty percent of all indirect links were impossible in the dynamical network. Consequently, properties and thus also robustness of ecological networks cannot be deduced from the static topology alone.


Subject(s)
Ecosystem , Animals , Greenland , Insecta/physiology , Pollination , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...