Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(8): e0289513, 2023.
Article in English | MEDLINE | ID: mdl-37527270

ABSTRACT

Large scale databases are critical for helping scientists decipher long-term patterns in human evolution. This paper describes the conception and development of such a research database and illustrates how big data can be harnessed to formulate new ideas about the past. The Role of Culture in Early Expansions of Humans (ROCEEH) is a transdisciplinary research center whose aim is to study the origins of culture and the multifaceted aspects of human expansions across Africa and Eurasia over the last three million years. To support its research, the ROCEEH team developed an online tool named the ROCEEH Out of Africa Database (ROAD) and implemented its web-based applications. ROAD integrates geographical data as well as archaeological, paleoanthropological, paleontological and paleobotanical content within a robust chronological framework. In fact, a unique feature of ROAD is its ability to dynamically link scientific data both spatially and temporally, thereby allowing its reuse in ways that were not originally conceived. The data stem from published sources spanning the last 150 years, including those generated by the research team. Descriptions of these data rely on the development of a standardized vocabulary and profit from online explanations of each table and attribute. By synthesizing legacy data, ROAD facilitates the reuse of heritage data in novel ways. Database queries yield structured information in a variety of interoperable formats. By visualizing data on maps, users can explore this vast dataset and develop their own theories. By downloading data, users can conduct further quantitative analyses, for example with Geographic Information Systems, modeling programs and artificial intelligence. In this paper, we demonstrate the innovative nature of ROAD and show how it helps scientists studying human evolution to access datasets from different fields, thereby connecting the social and natural sciences. Because it permits the reuse of "old" data in new ways, ROAD is now an indispensable tool for researchers of human evolution and paleogeography.


Subject(s)
Artificial Intelligence , Geographic Information Systems , Humans , Databases, Factual , Software , Africa
2.
Sci Total Environ ; 648: 754-771, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30134213

ABSTRACT

With 450,000 km2Kobresia (syn. Carex) pygmaea dominated pastures in the eastern Tibetan highlands are the world's largest pastoral alpine ecosystem forming a durable turf cover at 3000-6000 m a.s.l. Kobresia's resilience and competitiveness is based on dwarf habit, predominantly below-ground allocation of photo assimilates, mixture of seed production and clonal growth, and high genetic diversity. Kobresia growth is co-limited by livestock-mediated nutrient withdrawal and, in the drier parts of the plateau, low rainfall during the short and cold growing season. Overstocking has caused pasture degradation and soil deterioration over most parts of the Tibetan highlands and is the basis for this man-made ecosystem. Natural autocyclic processes of turf destruction and soil erosion are initiated through polygonal turf cover cracking, and accelerated by soil-dwelling endemic small mammals in the absence of predators. The major consequences of vegetation cover deterioration include the release of large amounts of C, earlier diurnal formation of clouds, and decreased surface temperatures. These effects decrease the recovery potential of Kobresia pastures and make them more vulnerable to anthropogenic pressure and climate change. Traditional migratory rangeland management was sustainable over millennia, and possibly still offers the best strategy to conserve and possibly increase C stocks in the Kobresia turf.

3.
Plant Divers ; 38(6): 271-282, 2016 Dec.
Article in English | MEDLINE | ID: mdl-30159478

ABSTRACT

Yunnan in southwestern China is renowned for its high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate the past biodiversity throughout the geological time. In this review, we present a summary on plant diversity, floristics and climates in the Cenozoic of Yunnan and document their changes, by compiling published palaeobotanical sources. Our review demonstrates that thus far a total of 386 fossil species of ferns, gymnosperms and angiosperms belonging to 170 genera within 66 families have been reported from the Cenozoic, particularly the Neogene, of Yunnan. Angiosperms display the highest richness represented by 353 species grouped into 155 genera within 60 families, with Fagaceae, Fabaceae, Lauraceae and Juglandaceae being the most diversified. Most of the families and genera recorded as fossils still occur in Yunnan, but seven genera have disappeared, including Berryophyllum, Cedrelospermum, Cedrus, Palaeocarya, Podocarpium, Sequoia and Wataria. The regional extinction of these genera is commonly referred to an aridification of the dry season associated with Asian monsoon development. Floristic analyses indicate that in the late Miocene, Yunnan had three floristic regions: a northern subtropical floristic region in the northeast, a subtropical floristic region in the east, and a tropical floristic region in the southwest. In the late Pliocene, Yunnan saw two kinds of floristic regions: a subalpine floristic region in the northwest, and two subtropical floristic regions separately in the southwest and the eastern center. These floristic concepts are verified by results from our areal type analyses which suggest that in the Miocene southwestern Yunnan supported the most Pantropic elements, while in the Pliocene southwestern Yunnan had abundant Tropical Asia (Indo-Malaysia) type and East Asia and North America disjunct type that were absent from northwestern Yunnan. From the late Miocene to late Pliocene through to the present, floristic composition and vegetation types changed markedly, presumably in response to altitude changes and coeval global cooling. An integration of palaeoclimate data suggests that during the Neogene Yunnan was warmer and wetter than today. Moreover, northern Yunnan witnessed a pronounced temperature decline, while southern Yunnan experienced only moderate temperature changes. Summer precipitation was consistently higher than winter precipitation, suggesting a rainfall seasonality. This summary on palaeoclimates helps us to understand under what conditions plant diversity occurred and evolved in Yunnan throughout the Cenozoic.

4.
PLoS One ; 7(5): e37760, 2012.
Article in English | MEDLINE | ID: mdl-22629452

ABSTRACT

Yuanmou Basin of Yunnan, SW China, is a famous locality with hominids, hominoids, mammals and plant fossils. Based on the published megaflora and palynoflora data from Yuanmou Basin, the climate of Late Pliocene is reconstructed using the Coexistence Approach. The results indicate a warm and humid subtropical climate with a mean annual temperature of ca. 16-17°C and a mean annual precipitation of ca. 1500-1600 mm in the Late Pliocene rather than a dry, hot climate today, which may be due to the local tectonic change and gradual intensification of India monsoon. The comparison of Late Pliocene climate in Eryuan, Yangyi, Longling, and Yuanmou Basin of Yunnan Province suggests that the mean annual temperatures generally show a latitudinal gradient and fit well with their geographic position, while the mean annual precipitations seem to be related to the different geometries of the valleys under the same monsoon system.


Subject(s)
Climate , China , Geography , Rain , Temperature
5.
Proc Biol Sci ; 278(1709): 1131-40, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21227966

ABSTRACT

Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales. One productive way to unite data across scales is the study of functional morphological traits, which can form a common denominator for studying interactions between species and climate across taxa, across ecosystems, across space and through time-an approach we call 'ecometrics'. The sampling methods that have become established in palaeontology to standardize over different scales can be synthesized with tools from community ecology and climate change biology to improve our understanding of the dynamics among species, ecosystems, climates and earth systems over time. Developing these approaches into an integrative climate change biology will help enrich our understanding of the changes our modern world is undergoing.


Subject(s)
Climate Change , Adaptation, Biological , Animals , Biological Evolution , Ecosystem , Population Dynamics , Species Specificity
6.
Integr Zool ; 5(2): 88-101, 2010 Jun.
Article in English | MEDLINE | ID: mdl-21392327

ABSTRACT

We outline here an approach for understanding the biology of climate change, one that integrates data at multiple spatial and temporal scales. Taxon-free trait analysis, or "ecometrics," is based on the idea that the distribution in a community of ecomorphological traits such as tooth structure, limb proportions, body mass, leaf shape, incubation temperature, claw shape, any aspect of anatomy or physiology can be measured across some subset of the organisms in a community. Regardless of temporal or spatial scale, traits are the means by which organisms interact with their environment, biotic and abiotic. Ecometrics measures these interactions by focusing on traits which are easily measurable, whose structure is closely related to their function, and whose function interacts directly with local environment. Ecometric trait distributions are thus a comparatively universal metric for exploring systems dynamics at all scales. The main challenge now is to move beyond investigating how future climate change will affect the distribution of organisms and how it will impact ecosystem services and to shift the perspective to ask how biotic systems interact with changing climate in general, and how climate change affects the interactions within and between the components of the whole biotic-physical system. We believe that it is possible to provide believable, quantitative answers to these questions. Because of this we have initiated an IUBS program iCCB (integrative Climate Change Biology).


Subject(s)
Adaptation, Biological/physiology , Biology/methods , Biota , Climate Change , Environment , Models, Biological , Research Design
7.
Am J Bot ; 94(4): 599-608, 2007 Apr.
Article in English | MEDLINE | ID: mdl-21636429

ABSTRACT

The reconstruction of the climate in the Miocene Shanwang basin is an important link in understanding past climate and environmental changes in East Asia. A recent study showed that the mean annual temperature (MAT) estimates derived from leaf margin analysis (LMA) and the Climate Leaf Analysis Multivariate Program (CLAMP) conflicted with and were remarkably lower than those estimated by the coexistence approach (CA). Overlapping distribution analysis (ODA), a new method introduced here, is used to reconstruct the Shanwang Miocene climate based explicitly on local plant distribution data and associated meteorological stations. The Shanwang flora (17-15.2 Ma) suggests a MAT of 10.9-14.5°C and a mean annual precipitation (MAP) of 1107.3-1880.0 mm. This result is closer to the values derived from CLAMP and LMA than that obtained by CA. This report is the first comprehensive intercomparison of foliar physiognomic and nearest living relative climate proxies in a Chinese context and provides important cross validation of results.

8.
Proc Natl Acad Sci U S A ; 102(42): 14964-9, 2005 Oct 18.
Article in English | MEDLINE | ID: mdl-16217023

ABSTRACT

Continental climate evolution of Central Europe has been reconstructed quantitatively for the last 45 million years providing inferred data on mean annual temperature and precipitation, and winter and summer temperatures. Although some regional effects occur, the European Cenozoic continental climate record correlates well with the global oxygen isotope record from marine environments. During the last 45 million years, continental cooling is especially pronounced for inferred winter temperatures but hardly observable from summer temperatures. Correspondingly, Cenozoic cooling in Central Europe is directly associated with an increase of seasonality. In contrast, inferred Cenozoic mean annual precipitation remained relatively stable, indicating the importance of latent heat transport throughout the Cenozoic. Moreover, our data support the concept that changes in atmospheric CO2 concentrations, although linked to climate changes, were not the major driving force of Cenozoic cooling.


Subject(s)
Climate , Evolution, Planetary , Temperature , Carbon Dioxide/chemistry , Europe , Fossils , Seasons
9.
New Phytol ; 166(2): 465-84, 2005 May.
Article in English | MEDLINE | ID: mdl-15819911

ABSTRACT

Leaf physiognomic traits vary predictably along climatic and environmental gradients. The relationships between leaf physiognomy and climate have been investigated on different continents, but so far an investigation based on European vegetation has been missing. A grid data set (0.5 degrees x 0.5 degrees latitude/longitude) has been compiled in order to determine spatial patterns of leaf physiognomy across Europe. Based on distribution maps of native European hardwoods, synthetic chorologic flora lists were compiled for all grid cells. Every synthetic chorologic flora was characterised by 25 leaf physiognomic traits and correlated with 16 climatic parameters. Clear spatial patterns of leaf physiognomy have been observed, which are statistically significant related to certain, temperature-related climate parameters. Transfer functions for several climatic parameters have been established, based on the observed relationships. The study provides evidence that synthetically generated floras represent a powerful tool for analysing spatial patterns of leaf physiognomy and their relationships to climate. The transfer functions from the European data set indicate slightly different relationships of leaf physiognomy and environment compared with results obtained from other continents.


Subject(s)
Biological Evolution , Climate , Plant Leaves/anatomy & histology , Demography , Europe , Plant Physiological Phenomena
10.
Am J Bot ; 92(4): 709-21, 2005 Apr.
Article in English | MEDLINE | ID: mdl-21652450

ABSTRACT

Sphenobaiera huangii (Sze) Hsü is typical Early Mesozoic fossil foliage of Ginkgoales in China. It has been recorded from the Upper Triassic to the Lower Jurassic. The cuticular anatomy is investigated based on material from the type locality, Lower Jurassic Hsiangchi Formation, Zigui County, Hubei Province. The specimens are similar to S. huangii, but contain new information about leaf morphology and cuticular anatomy. Lower and upper cuticle is investigated using light and electron microscopy (LM, SEM, and TEM). Many features are described for the first time, including general structures of lower and upper cuticle, stomata, papillae, and cuticular ultrastructure. At the ultrastructural level, two layers have been distinguished in both lower and upper cuticle, including a homogeneous outer layer with granules and a heterogeneous inner layer with fibrils. Based on a literature comparison between S. huangii and other relevant species of Sphenobaiera, S. huangii may represent the best-known taxon in the genus Sphenobaiera in both leaf morphology and cuticular structures. This study provides the first detailed ultrastructural data on the leaf cuticle of Sphenobaiera, one of the oldest foliage taxa of Ginkgoales, and offers further evidence for potential discussion on the taxonomic relationships of S. huangii with other ginkgoalean taxa.

SELECTION OF CITATIONS
SEARCH DETAIL
...