Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 14(7): 468, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495601

ABSTRACT

Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment. The in silico single gene deletion step was adapted to simulate the knock-out of all targets of a drug on an objective function such as growth or energy balance. Based on publicly available, and in-house, large-scale transcriptomic data metabolic models for melanoma were reconstructed enabling the prediction of 28 candidate drugs and estimating their respective efficacy. Twelve highly efficacious drugs with low half-maximal inhibitory concentration values for the treatment of other cancers, which are not yet approved for melanoma treatment, were used for in vitro validation using melanoma cell lines. Combination of the top 4 out of 6 promising candidate drugs with BRAF or MEK inhibitors, partially showed synergistic growth inhibition compared to individual BRAF/MEK inhibition. Hence, the repurposing of drugs may enable an increase in therapeutic options e.g., for non-responders or upon acquired resistance to conventional melanoma treatments.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/metabolism , Neoplasm Recurrence, Local/drug therapy , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mitogen-Activated Protein Kinase Kinases , Drug Development , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
2.
iScience ; 24(10): 103110, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34622163

ABSTRACT

Genome-scale metabolic reconstructions include all known biochemical reactions occurring in a cell. A typical application is the prediction of potential drug targets for cancer treatment. The precision of these predictions relies on the definition of the objective function. Generally, the biomass reaction is used to illustrate the growth capacity of a cancer cell. Today, seven human biomass reactions can be identified in published metabolic models. The impact of these differences on the metabolic model predictions has not been explored in detail. We explored this impact on cancer metabolic model predictions and showed that the metabolite composition and the associated coefficients had a large impact on the growth rate prediction accuracy, whereas gene essentiality predictions were mainly affected by the metabolite composition. Our results demonstrate the importance of defining a consensus biomass reaction compatible with most human models, which would contribute to ensuring the reproducibility and consistency of the results.

SELECTION OF CITATIONS
SEARCH DETAIL
...