Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Anal Bioanal Chem ; 415(6): 1149-1157, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36700985

ABSTRACT

The fast-growing healthcare demand for user-friendly and affordable analytical tools is driving the efforts to develop reliable platforms for the customization of therapy based on individual health conditions. In this overall scenario, we developed a paper-based electrochemical sensor for the quantification of iron ions in serum as a cost-effective sensing tool for the correct supplement administration. In detail, the working electrode of the screen-printed device has been modified with a nanocomposite constituted of carbon black and gold nanoparticles with a drop-casting procedure. Square wave voltammetry has been adopted as an electrochemical technique. This sensor was further modified with Nafion for iron quantification in serum after sample treatment with trifluoroacetic acid. Under optimized conditions, iron ions have been detected with a LOD down to 0.05 mg/L and a linearity up to 10 mg/L in standard solution. The obtained results have been compared with reference methods namely commercial colorimetric assay and atomic absorption spectroscopy, obtaining a good correlation within the experimental errors. These results demonstrated the suitability of the developed paper-based sensor for future applications in precision medicine of iron-deficiency diseases.


Subject(s)
Iron , Metal Nanoparticles , Iron/chemistry , Gold/chemistry , Limit of Detection , Electrodes , Electrochemical Techniques/methods
2.
Mikrochim Acta ; 189(8): 311, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35920941

ABSTRACT

The increasing demand for food and the need for a sustainability vision in the agri-food sector have boosted novel approaches for food management, enhancing the valorization of wastes and by-products belonging to the food industry. Herein, we present a novel paper-based origami device to assess the amount of both glucosinolate and glucose in a food waste product belonging to Brassicaceae plants, to evaluate the quality value and the correct management of waste samples. The device has been designed as an origami paper-based platform constituted of two paper-based biosensors to work synergistically in a multiplexed detection. In detail, a monoenzymatic biosensor and a bienzymatic biosensor were configured for the detection of glucose and glucosinolates, respectively, using filter paper pads preloaded with glucose oxidase and/or myrosinase. To complete the paper-based platform, the enzyme-preloaded pads were combined with office paper-based electrodes modified with Carbon black/Prussian Blue nanoparticles for the measurement of enzymatic by-product at a low applied potential (i.e., 0 V versus Ag/AgCl). Overall, this paper-based platform measured glucose and glucosinolate (i.e., sinigrin) with a linear range up to 2.5 and 1.5 mM, and detection limits of 0.05 and 0.07 mM, respectively. The repeatability corresponded to an RSD% equal to 5% by testing 10 mM of glucose, and 10% by testing 1 mM of sinigrin. The accuracy of the developed multiplex device was evaluated by recovery studies at two different levels of sinigrin, i.e., 0.25 and 0.5 mM, obtaining recoveries values equal to (111 ± 3) % and (86 ± 1) %, respectively. The multiplex detection of both glucose and glucosinolate in Brassicaceae samples evaluates the quality values of the waste sample, ensuring the quality of the re-used food product waste by using an eco-designed analytical tool. The combination of paper-based devices for quality control of food waste with the re-use of these food products represents a sustainable approach that perfectly matches sustainable agrifood practices as well as the overall approach of the circular economy.


Subject(s)
Glucosinolates , Refuse Disposal , Food , Glucose , Paper , Quality Control
3.
J Mater Chem B ; 10(44): 9021-9039, 2022 11 16.
Article in English | MEDLINE | ID: mdl-35899594

ABSTRACT

In the last few decades, nanomaterials have made great advances in the biosensor field, thanks to their ability to enhance several key issues of biosensing analytical tools, namely, sensitivity, selectivity, robustness, and reproducibility. The recent trend of sustainability has boosted the progress of novel and eco-designed electrochemical paper-based devices to detect easily the target analyte(s) with high sensitivity in complex matrices. The huge attention given by the scientific community and industrial sectors to paper-based devices is ascribed to the numerous advantages of these cost-effective analytical tools, including the absence of external equipment for solution flow, thanks to the capillary force of paper, the fabrication of reagent-free devices, because of the loading of reagents on the paper, and the easy multistep analyses by using the origami approach. Besides these features, herein we highlight the multifarious aspects of the nanomaterials such as (i) the significant enlargement of the electroactive surface area as well as the area available for the desired chemical interactions, (ii) the capability of anchoring biorecognition elements on the electrode surface on the paper matrix, (iii) the improvement of the conductivity of the cellulose matrix, (iv) the functionality of photoelectrochemical properties within the cellulose matrix, and (v) the improvement of electrochemical capabilities of conductive inks commonly used for electrode printing on the paper support, for the development of a new generation of paper-based electrochemical biosensors applied in the biomedical field. The state of the art over the last ten years has been analyzed highlighting the various functionalities that arise from the integration of nanomaterials with paper-based electrochemical biosensors for the detection of biomarkers.


Subject(s)
Biosensing Techniques , Nanostructures , Reproducibility of Results , Nanostructures/chemistry , Biomarkers , Cellulose
4.
Nucleic Acids Res ; 50(14): 8377-8391, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35822842

ABSTRACT

The RNA programmed non-specific (trans) nuclease activity of CRISPR-Cas Type V and VI systems has opened a new era in the field of nucleic acid-based detection. Here, we report on the enhancement of trans-cleavage activity of Cas12a enzymes using hairpin DNA sequences as FRET-based reporters. We discover faster rate of trans-cleavage activity of Cas12a due to its improved affinity (Km) for hairpin DNA structures, and provide mechanistic insights of our findings through Molecular Dynamics simulations. Using hairpin DNA probes we significantly enhance FRET-based signal transduction compared to the widely used linear single stranded DNA reporters. Our signal transduction enables faster detection of clinically relevant double stranded DNA targets with improved sensitivity and specificity either in the presence or in the absence of an upstream pre-amplification step.


Subject(s)
CRISPR-Associated Proteins , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA/genetics , DNA Cleavage , DNA, Single-Stranded/genetics
5.
Biosens Bioelectron ; 205: 114119, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35231751

ABSTRACT

Pesticides are largely used at worldwide level to improve food production, fulfilling the needs of the global population which is increasing year by year. Although pesticides are beneficial for crop production, their extensive use has serious consequences for the pollution of the produced food as well as for soil and groundwaters. Indeed, it is reported that 50% of sprayed pesticides reach different destinations other than their target species, including soil, surface waters, and groundwaters. For this reason, we developed a flower-like origami paper-based device for pesticides detection in aerosol phase for precision agriculture. In detail, the paper-based electrochemical platform detects paraoxon, 2,4-dichlorophenoxyacetic acid, and glyphosate at ppb levels by measuring their inhibitory activity towards three different enzymes namely butyrylcholinesterase, alkaline phosphatase, and peroxidase enzyme, respectively. This integrated electrochemical device is composed of three office paper-based screen-printed electrodes and filter paper-based pads loaded with enzymes and enzymatic substrates. The pesticide detection is carried out by measuring through chronoamperometric technique the initial and residual enzymatic activity by using a smartphone-assisted potentiostat and evaluating the percentage of inhibition, proportional to the amount of aerosolized pesticides. This paper-based device was able to detect the three classes of pesticides in aerosol phase with limits of detection equal to 30 ppb, 10 ppb, and 2 ppb, respectively for 2,4-D, glyphosate, and paraoxon.


Subject(s)
Biosensing Techniques , Pesticides , Aerosols , Agriculture , Biosensing Techniques/methods , Butyrylcholinesterase , Pesticides/analysis
6.
Biosens Bioelectron ; 200: 113909, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34995838

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been recognized as a global pandemic outbreak, opening the most severe socio-economic crisis since World War II. Different scientific activities have been emerged in this global scenario, including the development of innovative analytical tools to measure nucleic acid, antibodies, and antigens in the nasopharyngeal swab, serum, and saliva for prompt identification of COVID-19 patients and to evaluate the immune response to the vaccine. The detection of SARS-CoV-2 in saliva remains a challenge for the lack of sufficient sensitivity. To address this issue, we developed a novel paper-based immunoassay using magnetic beads to support the immunological chain and 96-well wax-printed paper plate as a platform for color visualization by using a smartphone combined with Spotxel free-charge app. To assess the reliability of the measurement of SARS-CoV-2 in saliva, untreated saliva was used as a specimen and the calibration curve demonstrated a dynamic range up to 10 µg/mL, with a detection limit equal to 0.1 µg/mL. The effectiveness of this sustainable analytical tool in saliva was evaluated by comparing the data with the nasopharyngeal swab specimens sampled by the same patients and tested with Real-Time PCR reference method, founding 100% of agreement, even in the case of high Cycle Threshold (CT) numbers (low viral load). Furthermore, the positive saliva samples were characterized by the next-generation sequencing method, demonstrating the capability to detect the Delta variant, which is actually (July 2021) the most relevant variant of concern.


Subject(s)
Biosensing Techniques , COVID-19 , Colorimetry , Humans , Immunoassay , Magnetic Phenomena , Nasopharynx , Reproducibility of Results , SARS-CoV-2 , Saliva , Smartphone , Specimen Handling
7.
Talanta ; 237: 122869, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34736707

ABSTRACT

Point-of-care devices have attracted a huge interest by the scientific community because of the valuable potentiality for rapid diagnosis and precision medicine through cost-effective and easy-to-use devices for on-site measurement by unskilled personnel. Herein, we reported a smartphone-assisted electrochemical device consisted of a screen-printed electrode modified with carbon black nanomaterial and a commercially available smartphone potentiostat i.e. EmStat3 Blue, for sensitive detection of tyrosine. Once optimized the conditions, tyrosine was detected in standard solutions by square wave voltammetry, achieving a linear range comprised between 30 and 500 µM, with a detection limit equal to 4.4 µM. To detect tyrosine in serum, the interference of another amino acid i.e. tryptophan was hindered using a sample treatment with an extraction cartridge. The agreement of results analyzing serum samples with HPLC reference method and with the developed smart sensing system demonstrated the suitability of this smartphone-assisted sensing tool for cost-effective and rapid analyses of tyrosine in serum samples.


Subject(s)
Electrochemical Techniques , Smartphone , Electrodes , Limit of Detection , Soot , Tyrosine
8.
Biosensors (Basel) ; 11(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34562898

ABSTRACT

The recent global events of COVID-19 in 2020 have alerted the world to the risk of viruses and their impacts on human health, including their impacts in the social and economic sectors. Rapid tests are urgently required to enable antigen detection and thus to facilitate rapid and simple evaluations of contagious individuals, with the overriding goal to delimitate spread of the virus among the population. Many efforts have been achieved in recent months through the realization of novel diagnostic tools for rapid, affordable, and accurate analysis, thereby enabling prompt responses to the pandemic infection. This review reports the latest results on electrochemical and optical biosensors realized for the specific detection of SARS-CoV-2 antigens, thus providing an overview of the available diagnostics tested and marketed for SARS-CoV-2 antigens as well as their pros and cons.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Biosensing Techniques , COVID-19/immunology , Electrochemical Techniques , Humans , Reagent Kits, Diagnostic , Sensitivity and Specificity
9.
Biosensors (Basel) ; 11(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34562920

ABSTRACT

In the last 10 years, paper-based electrochemical biosensors have gathered attention from the scientific community for their unique advantages and sustainability vision. The use of papers in the design the electrochemical biosensors confers to these analytical tools several interesting features such as the management of the solution flow without external equipment, the fabrication of reagent-free devices exploiting the porosity of the paper to store the reagents, and the unprecedented capability to detect the target analyte in gas phase without any sampling system. Furthermore, cost-effective fabrication using printing technologies, including wax and screen-printing, combined with the use of this eco-friendly substrate and the possibility of reducing waste management after measuring by the incineration of the sensor, designate these type of sensors as eco-designed analytical tools. Additionally, the foldability feature of the paper has been recently exploited to design and fabricate 3D multifarious biosensors, which are able to detect different target analytes by using enzymes, antibodies, DNA, molecularly imprinted polymers, and cells as biocomponents. Interestingly, the 3D structure has recently boosted the self-powered paper-based biosensors, opening new frontiers in origami devices. This review aims to give an overview of the current state origami paper-based biosensors, pointing out how the foldability of the paper allows for the development of sensitive, selective, and easy-to-use smart and sustainable analytical devices.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Paper , Electrodes
10.
Talanta ; 234: 122672, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34364473

ABSTRACT

An Enzyme Linked ImmunoMagnetic Electrochemical assay (ELIME) was developed for the detection of the hepatitis A virus (HAV). This system is based on the use of new polydopamine-modified magnetic nanobeads as solid support for the immunochemical chain, and an array of 8 screen-printed electrodes as a sensing platform. Enzymatic-by-product is quickly measured by differential pulse voltammetry. For this purpose, all analytical parameters were optimized; in particular, different blocking reagents were evaluated in order to minimize the nonspecific interaction of bioreagents. Using the ELIME assays, a quantitative determination of HAV can be achieved with a detection limit of 1·10-11 IU mL-1 and a working range between 10-10 - 5 × 10-7 IU mL-1. The cross-reactivity of the commercial monoclonal antibodies against HAV used in ELIME assays was tested for Coxsackie B4, resulting very low. The sensitivity was also investigated and compared with spectrophotometric sandwich ELISA. The average relative standard deviation (RSD) of the ELIME method was less than 5% for the assays performed on the same day, and 7% for the measurements made on different days. The proposed system was applied to the cell culture of HAV, which title was quantified by Real-Time Quantitative Reverse Transcription PCR (RT¬qPCR). To compare the results, a correlation between the units used in ELIME (IU mL-1) and those used in RT¬qPCR (genome mL-1) was established using a HAV-positive sample, resulting in 1 IU mL-1-10-4 gen mL-1 (R2 = 0.978). The ELIME tool exhibits good stability and high biological selectivity for HAV antigen detection and was successfully applied for the determination of HAV in tap water.


Subject(s)
Hepatitis A virus , Biological Assay , Hepatitis A virus/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
11.
Talanta ; 232: 122474, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34074442

ABSTRACT

In this work, a wax-patterned chromatographic paper has been utilized as a holistic platform to 1) synthesize Prussian Blue Nanoparticles (sensing species), 2) load the reagents for the assay, 3) concentrate the sample through multistep, and 4) visualize the determination of silver ions. Waters are continuously affected by changes in the composition, thus the utilization of reagent-free analytical tools is of huge interest for smart drinking water monitoring. Herein, we report the characterization and application of a multi-array paper-based platform for the colorimetric determination of silver ions based on the conversion from Prussian Blue to its silver-based analogue, namely Ag4[Fe(CN)6]. In particular, the platform highlights the increase of sensitivity due to paper pre-concentration of sample, that can be easily adapted to the analytical necessities. Within the proposed experimental setup, Ag+ is visualized down to a detection limit of 0.9 µM, with high repeatability and satisfactory recoveries in the range comprised between 90 and 113%.

12.
Biosens Bioelectron ; 183: 113210, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33852978

ABSTRACT

Botulinum neurotoxins (BoNTs) produced by soil bacterium Clostridium botulinum are cause of botulism and listed as biohazard agents, thus rapid screening assays are needed for taking the correct countermeasures in a timely fashion. The gold standard method relies on the mouse lethality assay with a lengthy analysis time, i.e., 2-5 days, hindering the prompt management of food safety and medical diagnosis. Herein, we propose the first paper-based antibody-free sensor for reliable and rapid detection of BoNT/A and BoNT/C, exploiting their cleavage capability toward a synthetic peptide able to mimic the natural substrate SNAP-25. The peptide is labelled with the electroactive molecule methylene blue and immobilized on the paper-based electrode modified with gold nanoparticles. Because BoNT/A and BoNT/C can cleave the peptide with the removal of methylene blue from electrode surface, the presence of these neurotoxins in the sample leads to a signal decrease proportional to BoNT amount. The biosensor developed with the selected peptide and combined with smartphone assisted potentiostat is able to detect both BoNT/A and BoNT/C with a linearity up to 1 nM and a detection limit equal to 10 pM. The applicability of this biosensor was evaluated with spiked samples of orange juice, obtaining recovery values equal to 104 ± 6% and 98 ± 9% for 1 nM and 0.5 nM of BoNT/A, respectively.


Subject(s)
Biosensing Techniques , Botulinum Toxins, Type A , Metal Nanoparticles , Animals , Gold , Limit of Detection , Mice , Peptides , Serogroup
13.
Microchem J ; 166: 106249, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33840838

ABSTRACT

The outbreak of COVID-19 is caused by high contagiousness and rapid spread of SARS-CoV-2 virus between people when an infected person is in close contact with another one. In this overall scenario, the disinfection processes have been largely improved. For instance, some countries have approved no-touch technologies by vaporizing disinfectants such as hydrogen peroxide, with the overriding goal to boost the safety of the places. In the era of sustainability, we designed an electrochemical paper-based device for the assessment of hydrogen peroxide nebulized by a cost-effective ultrasonic aroma diffuser. The paper-based sensor was fabricated by modifying via drop-casting a filter paper-based screen-printed electrode with a dispersion of carbon black-Prussian Blue nanocomposite, to assess the detection of hydrogen peroxide at -0.05 V vs Ag/AgCl. The use of paper-based modified screen-printed electrode loaded with phosphate buffer allowed for monitoring the concentration of hydrogen peroxide in aerosol, without any additional sampling instrument to capture the nebulized solution of hydrogen peroxide at a concentration up to 7% w/w. Hydrogen peroxide, a reconverted ultrasonic aroma diffuser, and the paper-based electrochemical sensor assisted by smartphone have demonstrated how different low-cost technologies are able to supply an useful and cost-effective solution for disinfection procedures.

14.
Anal Chem ; 93(12): 5225-5233, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33739824

ABSTRACT

The growth of (bio)sensors in analytical chemistry is mainly attributable to the development of affordable, effective, portable, and user-friendly analytical tools. In the field of sensors, paper-based devices are gaining a relevant position for their outstanding features including foldability, ease of use, and instrument-free microfluidics. Herein, a multifarious use of filter paper to detect copper ions in bodily fluids is reported by exploiting this eco-friendly material to (i) synthesize AuNPs without the use of reductants and/or external stimuli, (ii) print the electrodes, (iii) load the reagents for the assay, (iv) filter the gross impurities, and (v) preconcentrate the target analyte. Copper ions were detected down to 3 ppb with a linearity up to 400 ppb in standard solutions. The applicability in biological matrices, namely, sweat and serum, was demonstrated by recovery studies and by analyzing these biofluids with the paper-based platform and the reference method (atomic absorption spectroscopy), demonstrating satisfactory accuracy of the novel eco-designed analytical tool.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Copper , Gold , Ions , Sweat
15.
Environ Sci Pollut Res Int ; 28(20): 25069-25080, 2021 May.
Article in English | MEDLINE | ID: mdl-29934830

ABSTRACT

Herein, we report a novel paper-based electrochemical sensor for on-site detection of sulphur mustards. This sensor was conceived combining office paper-based electrochemical sensor with choline oxidase enzyme to deliver a sustainable sensing tool. The mustard agent detection relies on the evaluation of inhibition degree of choline oxidase, which is reversibly inhibited by sulphur mustards, by measuring the enzymatic by-product H2O2 in chronoamperometric mode. A nanocomposite constituted of Prussian Blue nanoparticles and Carbon Black was used as working electrode modifier to improve the electroanalytical performances. This bioassay was successfully applied for the measurement of a sulphur mustard, Yprite, obtaining a detection limit in the millimolar range (LOD = 0.9 mM). The developed sensor, combined with a portable and easy-to-use instrumentation, can be applied for a fast and cost-effective detection of sulphur mustards.


Subject(s)
Biosensing Techniques , Mustard Gas , Nanoparticles , Electrochemical Techniques , Electrodes , Hydrogen Peroxide , Limit of Detection
16.
Biosens Bioelectron ; 171: 112686, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33086175

ABSTRACT

The diffusion of novel SARS-CoV-2 coronavirus over the world generated COVID-19 pandemic event as reported by World Health Organization on March 2020. The huge issue is the high infectivity and the absence of vaccine and customised drugs allowing for hard management of this outbreak, thus a rapid and on site analysis is a need to contain the spread of COVID-19. Herein, we developed an electrochemical immunoassay for rapid and smart detection of SARS-CoV-2 coronavirus in saliva. The electrochemical assay was conceived for Spike (S) protein or Nucleocapsid (N) protein detection using magnetic beads as support of immunological chain and secondary antibody with alkaline phosphatase as immunological label. The enzymatic by-product 1-naphtol was detected using screen-printed electrodes modified with carbon black nanomaterial. The analytical features of the electrochemical immunoassay were evaluated using the standard solution of S and N protein in buffer solution and untreated saliva with a detection limit equal to 19 ng/mL and 8 ng/mL in untreated saliva, respectively for S and N protein. Its effectiveness was assessed using cultured virus in biosafety level 3 and in saliva clinical samples comparing the data using the nasopharyngeal swab specimens tested with Real-Time PCR. The agreement of the data, the low detection limit achieved, the rapid analysis (30 min), the miniaturization, and portability of the instrument combined with the easiness to use and no-invasive sampling, confer to this analytical tool high potentiality for market entry as the first highly sensitive electrochemical immunoassay for SARS-CoV-2 detection in untreated saliva.


Subject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques/instrumentation , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Saliva/virology , COVID-19 , COVID-19 Testing , Coronavirus Nucleocapsid Proteins , Electrochemical Techniques/instrumentation , Electrodes , Equipment Design , Humans , Immunoassay/instrumentation , Magnets/chemistry , Nucleocapsid Proteins/analysis , Pandemics , Phosphoproteins , SARS-CoV-2 , Sensitivity and Specificity , Soot/chemistry , Spike Glycoprotein, Coronavirus/analysis
17.
Biosens Bioelectron ; 165: 112334, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32729479

ABSTRACT

The development of portable and user-friendly sensing platforms is a hot topic in the field of analytical chemistry. Among others, electroanalytical approaches exhibit a high amenability for reaching this purpose, i.e. the commercial strips for diabetes care are an obvious success. However, providing fully-integrated and reagent-free methods is always a leitmotiv. In this work, we evaluated the use of a disposable pipette tip, opportunely configured to demonstrate the first example of an electrochemical biosystem in a pipette tip, namely bio-lab-on-a-tip. The combination of a pipette tip, wire electrodes, enzyme, and cotton wool filter, allows the fabrication of a novel electroanalytical platform that does not need expertise-required tasks. To demonstrate the feasibility of this novel method, glucose is detected in beverages by means of chronoamperometry. The experimental setup, entirely built inside the pipette tip, is able to 1) block impurities/interferences from matrix, 2) load/release reagents for the bio-assay, 3) reduce the operating task to zero, and 4) perform electrochemical detection. With optimized experimental parameters, the bio-lab-on-a-tip is able to detect glucose linearly up to 10 mM with a detection limit of 170 µM. The effectiveness of the platform was confirmed by testing commercial beverages, e.g. Coca-Cola and Coca-Cola Zero, with high accuracy. In addition, the shelf-life of the novel device was evaluated, highlighting the role of cotton wool filter for providing a suitable environment for glucose oxidase stability. The novel concept can be easily generalized for further applications in the field of non-invasive clinical diagnostics and in-situ environmental monitoring.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Beverages/analysis , Electrodes , Glucose , Glucose Oxidase
18.
Biosens Bioelectron ; 165: 112371, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32729503

ABSTRACT

Pancreatic ductal adenocarcinoma is the predominant neoplastic disease of the pancreas and it represents the fourth most frequent cause of death in cancer-related disease, with only 8% of survivors after 5-year to the diagnosis. The main issues of this type of cancer rely on fast progress (i.e. 14 months from T1 to a T4 stage), nonspecific symptoms with delay in diagnosis, and the absence of effective screening strategies. To address the lack of early diagnosis, we report a cost-effective paper-based biosensor for the detection of miRNA-492, which is recognised as a biomarker for pancreatic ductal adenocarcinoma. To design a miniaturised, sensitive, and robust paper-based platform, an electrochemical sensor was screen-printed on office paper previously wax-patterned via wax-printing technique. The paper-based sensor was then engineered with a novel and highly specific peptide nucleic acid (PNA) as the recognition element. The formation of PNA/miRNA-492 adduct was evaluated by monitoring the interaction between the positively charged ruthenium (III) hexamine with uncharged PNA and/or negatively charged PNA/miRNA-492 duplex by differential pulse voltammetry. The paper-based biosensor provided a linear range up to 100 nM, with a LOD of 6 nM. Excellent selectivity towards one- and two-base mismatches (1MM, 2MM) or scrambled (SCR) sequences was highlighted and the applicability for biomedical analyses was demonstrated, measuring miRNA-492 in undiluted serum samples.


Subject(s)
Adenocarcinoma , Biosensing Techniques , MicroRNAs , Peptide Nucleic Acids , Biomarkers , Electrochemical Techniques , Humans , MicroRNAs/genetics , Peptide Nucleic Acids/genetics
19.
Biosens Bioelectron ; 165: 112411, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32729530

ABSTRACT

In the overall scenario of precision medicine, we propose a novel paper-based lab-on-a-chip to deliver a cost-effective and easy to use sensing tool for customized administration of drugs in Alzheimer's disease. Among several drugs, we designed the device for evaluating the efficacy of compounds (e.g. physostigmine, rivastigmine, donepezil) which are able to inhibit in a reversible way the cholinesterase enzyme. Because cholinesterase activity is peculiar to each patient, the administration of customized amount of the drug can improve the treatment efficacy and the quality of patient life, avoiding side effects due to the overdosage. In detail, we exploited Vivid™ Plasma Separation membrane to threat the whole blood sample, filter paper to load the reagents needed for the measurement, and office paper to print electrodes able to measure the butyrylcholinesterase activity, delivering a reagent free analytical tool. The calibration curve of butyrylcholinesterase obtained in blood sample provided linearity between 2 and 12 U/mL, with sensitivity of 0.050 ± 0.004 µA mL/U. The physostigmine, rivastigmine, and donepezil inhibition activities toward the butyrylcholinesterase enzyme were also measured in blood sample with linearity up to respectively 0.5 µM, 25 µM, 30 µM, and detection limits of 0.009 µM, 0.4 µM, 0.3 µM. These results demonstrate the capability of paper-based origami sensors as point of care devices to customize the drug administration in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors , Donepezil , Humans , Phenylcarbamates , Precision Medicine
20.
Biosens Bioelectron ; 159: 112203, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32364935

ABSTRACT

A novel amperometric algae-based biosensor was developed for the detection of photosynthetic herbicides in river water. The green photosynthetic algae Chlamydomonas reinhardtii was immobilized on carbon black modified screen-printed electrodes, exploiting carbon black as smart nanomaterial to monitor changes in algae oxygen evolution during the photosynthetic process. The decrease of oxygen evolution, occurring in the presence of herbicides, results in a decrease of current signals by means of amperometric measurements, in an analyte concentration dependent manner. Atrazine as case study herbicide was detected in a concentration range of 0.1 and 50 µM, with a linear range from 0.1 to 5 µM and a detection limit of 1 nM. No interference was observed in presence of 100 ppb arsenic, 20 ppb copper, 5 ppb cadmium, 10 ppb lead, 10 ppb bisphenol A, and 1 ppb paraoxon, tested as safety limits. A ~25% matrix effect and satisfactory recovery values of 107 ± 10% and 96 ± 8% were obtained in river water for 3 and 5 µM of atrazine, respectively. Stability studies were also performed obtaining a high working stability up to 10 h and repeatability with an RSD of 1.1% (n = 12), as well as a good storage stability up to 3 weeks.


Subject(s)
Biosensing Techniques/methods , Herbicides/analysis , Microalgae/chemistry , Nanoparticles , Oxygen/analysis , Soot/chemistry , Atrazine/analysis , Electrochemical Techniques , Reproducibility of Results , Rivers/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...