Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Plants (Basel) ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674539

ABSTRACT

Chili is a globally significant spice used fresh or dried for culinary, condiment, and medicinal purposes. Growing concerns about food safety have increased the demand for high-quality products and non-invasive tools for quality control like origin tracing and safety assurance. Volatile analysis offers a rapid, comprehensive, and safe method for characterizing various food products. Thus, this study aims to assess the impact of the drying process on the aromatic composition of various Capsicum species and to identify key compounds driving the aromatic complexity of each genetic makeup. To accomplish these objectives, the aroma was examined in fruits collected from 19 different pepper accessions (Capsicum sp.) belonging to four species: one ancestral (C. chacoense) and three domesticated pepper species (C. annuum, C. baccatum and C. chinense). Fresh and dried samples were analyzed using a headspace PTR-TOF-MS platform. Our findings reveal significant changes in the composition and concentration of volatile organic compounds (VOCs) from fresh to dried Capsicum. Notably, chili peppers of the species C. chinense consistently exhibited higher emission intensity and a more complex aroma compared to other species (both fresh and dried). Overall, the data clearly demonstrate that the drying process generally leads to a reduction in the intensity and complexity of the aromatic compounds emitted. Specifically, fresh peppers showed higher volatile organic compounds content compared to dried ones, except for the two sweet peppers studied, which exhibited the opposite behavior. Our analysis underscores the variability in the effect of drying on volatile compound composition among different pepper species and even among different cultivars, highlighting key compounds that could facilitate species classification in dried powder. This research serves as a preliminary guide for promoting the utilization of various pepper species and cultivars as powder, enhancing product valorization.

2.
Sensors (Basel) ; 23(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679667

ABSTRACT

Cocoon sorting is one of the most labor-demanding activities required both at the end of the agricultural production and before the industrial reeling process to obtain an excellent silk quality. In view of the possible relaunch of European sericulture, the automatization of this production step is mandatory both to reduce silk costs and to standardize fiber quality. The described research starts from this criticality in silk production (the manual labor required to divide cocoons into different quality classes) to identify amelioration solutions. To this aim, the automation of this activity was proposed, and a first prototype was designed and built. This machinery is based on the use of three cameras and imaging algorithms identifying the shape and size of the cocoons and outside stains, a custom-made light sensor and an AI model to discard dead cocoons. The current efficiency of the machine is about 80 cocoons per minute. In general, the amelioration obtained through this research involves both the application of traditional sensors/techniques to an unusual product and the design of a dedicated sensor for the identification of dead/alive pupae inside the silk cocoons. A general picture of the overall efficiency of the new cocoon-sorting prototype is also outlined.


Subject(s)
Bombyx , Animals , Silk
3.
Foods ; 11(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36360004

ABSTRACT

(1) Background: Extra virgin olive oil production is strictly influenced by the quality of fruits. The optical selection allows for obtaining high quality oils starting from batches with different qualitative characteristics. This study aims to test a CNN algorithm in order to assess its potential for olive classification into several quality classes for industrial purposes, specifically its potential integration and sorting performance evaluation. (2) Methods: The acquired samples were all subjected to visual analysis by a trained operator for the distinction of the products in five classes related to the state of external veraison and the presence of visible defects. The olive samples were placed at a regular distance and in a fixed position on a conveyor belt that moved at a constant speed of 1 cm/s. The images of the olives were taken every 15 s with a compact industrial RGB camera mounted on the main frame in aluminum to allow overlapping of the images, and to avoid loss of information. (3) Results: The modelling approaches used, all based on AI techniques, showed excellent results for both RGB datasets. (4) Conclusions: The presented approach regarding the qualitative discrimination of olive fruits shows its potential for both sorting machine performance evaluation and for future implementation on machines used for industrial sorting processes.

4.
Foods ; 11(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36141045

ABSTRACT

Extra virgin olive oil (EVOO) is a commercial product of high quality, thanks to its nutritional and organoleptic characteristics. The olives ripeness and the choice of harvest time according to their color and size, strongly influences the quality of the EVOO. The physical sorting of olives with machines performing rapid and objective optical selection, impossible by hand, can improve the quality of the final product. The aim of this study concerns the classification of olives into two qualitative classes, based on the maturity stage and the presence of external defects, through an industrial RGB optical sorting prototype, evaluating its performance and comparing the results with those obtained visually by trained operators. EVOOs obtained from classified olives were characterized through chemical, physical-chemical analysis and sensory profile. For the first time, the optoelectronic technologies in an industrial system was tested on olives to produce superior quality EVOO. The selection allows late harvest, obtaining oils with good characteristics from fully ripe and unripe fruits together, separating defective olives with appropriate calibration and training. Optoelectronic selection creates the opportunity to blend the obtained oils destined to different applications according to the needs of the consumer or producer, using a vanguard technology at low cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...