Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 20(1): 100, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32316935

ABSTRACT

BACKGROUND: Gut microbiota composition is known to depend on environmental (diet, day length, infections, xenobiotic exposure) and lifestyle (alcohol/drug intake, physical activity) factors. All these factors fluctuate seasonally, especially in areas with highly variable climatic conditions between seasons. Seasonal microbiota changes were reported in several previous studies. The purpose of our study was to investigate whether there is a seasonal variability in the gut microbiota composition in Ukrainian population. In contrast to previous studies performed on small-size samples using a longitudinal design, we used cross-sectional design with a large sample size (n = 769). Determination of microbial composition at the level of major microbial phyla was performed by qRT-PCR. RESULTS: The relative abundance of major taxonomic groups of gut microbiota was found to be affected by month of sampling. Actinobacteria were more abundant and Bacteroidetes were less abundant in summer-derived samples compared to those obtained during other seasons, whereas Firmicutes content was seasonally independent. The Firmicutes to Bacteroidetes (F/B) ratio was significantly higher in summer-derived samples than in winter-derived ones. Odds to have F/B > 1 were 3.3 times higher in summer samples and 1.9 times higher in autumn samples than in winter ones; neither age, nor sex were significant confounding factors. CONCLUSIONS: Seasonality of sampling could influence results of human microbiome research, thereby potentially biasing estimates. This factor must be taken into consideration in further microbiome research.


Subject(s)
Bacteria/classification , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Adolescent , Adult , Bacteria/genetics , Bacteria/isolation & purification , Berberine Alkaloids , Child , Child, Preschool , Cross-Sectional Studies , Female , Gastrointestinal Microbiome , Humans , Infant , Infant, Newborn , Life Style , Longitudinal Studies , Male , Middle Aged , Phenanthridines , Phylogeny , Real-Time Polymerase Chain Reaction , Sample Size , Seasons , Young Adult
2.
Genet Res Int ; 2019: 2483270, 2019.
Article in English | MEDLINE | ID: mdl-31885928

ABSTRACT

Tobacco smoking is known to be a strong risk factor for developing many diseases. The development and severity of smoking dependence results from interaction of environmental and lifestyle factors, psycho-emotional predispositions, and also from genetic susceptibility. In present study, we investigated polymorphic variants in genes contributed to nicotine dependence, as well as to increased impulsivity, known to be an important risk factor for substance use disorders, in Ukraine population. The genotype frequencies at CYP2A6, DNMT3B, DRD2, HTR2A, COMT, BDNF, GABRA2, CHRNA5, and DAT1 polymorphisms were determined in 171 Ukraine residents, and these data were compared with data for several other European populations and main ethnic groups. It has been found that genotype frequencies for all studied loci are in Hardy-Weinberg equilibrium in the Ukrainian population and correspond to the respective frequencies in European populations. These findings suggest a similar impact of these loci on nicotine dependence in Ukraine. Further studies with larger sample sizes are, however, needed to draw firm conclusions about the effect size of these polymorphisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...