Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(15): 4083-4090, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37063793

ABSTRACT

Redox-active tetraoxolene ligands such as 1,4-dihydroxybenzoquinone provide access to a diversity of metal-organic architectures, many of which display interesting magnetic behavior and high electrical conductivity. Here, we take a closer look at how structure dictates physical properties in a series of 1D iron-tetraoxolene chains. Using a diphenyl-derivatized tetraoxolene ligand (H2Ph2dhbq), we show that the steric profile of the coordinating solvent controls whether linear or helical chains are exclusively formed. Despite similar ligand environments, only the helical chain displays temperature-dependent valence tautomerism, switching from (FeII)(Ph2dhbq2-) to (FeIII)(Ph2dhbq3˙-) at temperatures below 203 K. The stabilization of ligand radicals leads to exceptionally strong magnetic exchange coupling (J = -230 ± 4 cm-1). Meanwhile, the linear chains are more amenable to oxidative doping, leading to Robin-Day class II/III mixed-valency and an increase in electrical conductivity by nearly three orders of magnitude. While previous studies have focused on the effects of changing metal and ligand identity, this work highlights how altering the metal-ligand connectivity can be a similarly powerful tool for tuning materials properties.

2.
Cell Rep Phys Sci ; 3(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35425929

ABSTRACT

Strategies for slowing magnetic relaxation via local environmental design are vital for developing next-generation spin-based technologies (e.g., quantum information processing). Herein, we demonstrate a technique to do so via chemical design of a local magnetic environment. We show that embedding the open-shell complex (Ph4P)2[Co(SPh)4] in solid-state matrices of the isostructural, open-shell species (Ph4P)2[M(SPh)4] (M = Ni2+, S = 1; M = Fe2+, S = 2; M = Mn2+, S = 5 2 ) will slow magnetic relaxation for the embedded [Co(SPh)4]2- ion by three orders of magnitude. Magnetometry, electron paramagnetic resonance (EPR), and computational analyses reveal that integer spin and large, positive zero-field splitting (D) values for the diluent produce a quiet, local magnetic field that slows relaxation rates for the embedded Co molecules. These results will enable the investigation of magnetic systems for which strictly diamagnetic congeners are either synthetically inaccessible or are not isostructural.

3.
Angew Chem Int Ed Engl ; 61(22): e202202329, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35302701

ABSTRACT

Dinitrogen coordination to iron centers underpins industrial and biological fixation in the Haber-Bosch process and by the FeM cofactors in the nitrogenase enzymes. The latter employ local high-spin metal centers; however, iron-dinitrogen coordination chemistry remains dominated by low-valent states, contrasting the enzyme systems. Here, we report a high-spin mixed-valent cis-(µ-1,2-dinitrogen)diiron(I/II) complex [(FeBr)2 (µ-N2 )Lbis ]- (2), where [Lbis ]- is a bis(ß-diketiminate) cyclophane. Field-applied Mössbauer spectra, dc and ac magnetic susceptibility measurements, and computational methods support a delocalized S=7 /2 Fe2 N2 unit with D=-5.23 cm-1 and consequent slow magnetic relaxation.


Subject(s)
Iron , Nitrogenase
4.
Chem Soc Rev ; 50(12): 6684-6699, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33949521

ABSTRACT

Understanding and utilizing the dynamic quantum properties of metal ions is the frontier of many next generation technologies. One property in particular, magnetic relaxation, is a complicated physical phenomenon that is scarcely treated in undergraduate coursework. Consequently, principles of magnetic relaxation are nearly impenetrable to starting synthetic chemists, who ultimately design the molecules that fuel new discoveries. In this Tutorial Review, we describe a new paradigm for thinking of magnetic relaxation in metal complexes in terms of a simple reaction-coordinate diagram to facilitate access to the field. We cover the main mechanisms of both spin-lattice (T1) and spin-spin (T2) relaxation times within this conceptual framework and how molecular and environmental design affects these times. Ultimately, we show that many of the scientific methods used by inorganic chemists to study and manipulate reactivity are also useful for understanding and controlling magnetic relaxation. We also describe the cutting edge of magnetic relaxation within this paradigm.

5.
Polyhedron ; 1752020 Jan 01.
Article in English | MEDLINE | ID: mdl-34092885

ABSTRACT

Low-coordinate ions possess exciting magnetic, optical, and reactive properties that may afford novel material physics. Hence, it is important to test both synthetic methods for realizing extended solids of such ions as well as the properties of smaller molecular fragments of envisioned future materials. Herein, we report the synthesis and characterization of a new dinuclear Fe species, [{(Me3Si2)2N}Fe{µ-p-{HN(SiMe3)}(C6Me4){N(SiMe3)}}2Fe{N(SiMe3)2}] (1), formed through a transamination reaction between [Fe{N(SiMe3)2}2]2 and the bulky diamine p-{HN(SiMe3)}2(C6Me4) (L). The Fe centers of this dimer assume a pseudo-trigonal-planar, three-coordinate conformation in 1, bridged by two aromatic diamines. Single-crystal X-ray diffraction, IR spectroscopy, and Mössbauer spectroscopy enable the assignment of both Fe centers as the 2+ oxidation state. Magnetic studies show that 1 displays a weak antiferromagnetic exchange interaction (J = -2.33 cm-1) and moderate zero-field splitting (D = 7.51 cm-1). Importantly, these studies demonstrate the viability of using transamination to bridge high-spin low-coordinate metal ions and hence the technique may, in the future, produce new extended structures.

6.
J Am Chem Soc ; 141(16): 6658-6671, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30973225

ABSTRACT

A comprehensive mechanistic study of electrocatalytic CO2 reduction by ruthenium 2,2':6',2″-terpyridine (tpy) pyridyl-carbene catalysts reveals the importance of stereochemical control to locate the strongly donating N-heterocyclic carbene ligand trans to the site of CO2 activation. Computational studies were undertaken to predict the most stable isomer for a range of reasonable intermediates in CO2 reduction, suggesting that the ligand trans to the reaction site plays a key role in dictating the energetic profile of the catalytic reaction. A new isomer of [Ru(tpy)(Mebim-py)(NCCH3)]2+ (Mebim-py is 1-methylbenzimidazol-2-ylidene-3-(2'-pyridine)) and both isomers of the catalytic intermediate [Ru(tpy)(Mebim-py)(CO)]2+ were synthesized and characterized. Experimental studies demonstrate that both isomeric precatalysts facilitate electroreduction of CO2 to CO in 95/5 MeCN/H2O with high activity and high selectivity. Cyclic voltammetry, infrared spectroelectrochemistry, and NMR spectroscopy studies provide a detailed mechanistic picture demonstrating an essential isomerization step in which the N-trans catalyst converts in situ to the C-trans variant. Insight into molecular electrocatalyst design principles emerge from this study. First, the use of an asymmetric ligand that places a strongly electron-donating ligand trans to the site of CO2 binding and activation is critical to high activity. Second, stereochemical control to maintain the desired isomer structure during catalysis is critical to performance. Finally, pairing the strongly donating pyridyl-carbene ligand with the redox-active tpy ligand proves to be useful in boosting activity without sacrificing overpotential. These design principles are considered in the context of surface-immobilized electrocatalysis.

7.
Inorg Chem ; 58(9): 5818-5826, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30900890

ABSTRACT

Hybrid metal halides yield highly desirable optoelectronic properties and offer significant opportunity due to their solution processability. This contribution reports a new series of hybrid semiconductors, (C7H7)MX4 (M = Bi3+, Sb3+; X = Cl-, Br-, I-), that are composed of edge-sharing MX6 chains separated in space by π-stacked tropylium (C7H7+) cations; the inorganic chains resemble the connectivity of BiI3. The Bi3+ compounds have blue-shifted optical absorptions relative to the Sb3+ compounds that span the visible and near-IR region. Consistent with observations, DFT calculations reveal that the conduction band is composed of the tropylium cation and valence band primarily the inorganic chain: a charge-transfer semiconductor. The band gaps for both Bi3+ and Sb3+ compounds decrease systematically as a function of increasing halide size. These compounds are a rare example of charge-transfer semiconductors that also exhibit efficient crystal packing of the organic cations, thus providing an opportunity to study how structural packing affects optoelectronic properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...