Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Anal Chem ; 94(32): 11315-11320, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35930735

ABSTRACT

A cheap, versatile, readily modified, and reusable glass probe system enabling delivery of solid air-/moisture-sensitive samples for mass spectrometric (MS) analysis using an Atmospheric pressure Solids Analysis Probe (ASAP) is described. The simplicity of the design allows quick and easy ASAP MS analyses of sensitive solid and liquid samples without the need for any modifications to commercially available vertically loaded ASAP mass spectrometers. A comparison of ASAP mass spectra obtained for metal complexes under air and an inert atmosphere is given.


Subject(s)
Atmosphere , Atmospheric Pressure , Mass Spectrometry/methods
2.
J Mater Chem C Mater ; 10(18): 7329-7335, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35706420

ABSTRACT

The aqueous equimolar reaction of Ag(i) ions with the thionucleoside enantiomer (-)6-thioguanosine, ((-)6tGH), yields a one-dimensional coordination polymer {Ag(-)tG} n , the self-assembly of which generates left-handed helical chains. The resulting helicity induces an enhanced chiro-optical response compared to the parent ligand. DFT calculations indicate that this enhancement is due to delocalisation of the excited state along the helical chains, with 7 units being required to converge the calculated CD spectra. At concentrations ≥15 mmol l-1 reactions form a sample-spanning hydrogel which shows self-repair capabilities with instantaneous recovery in which the dynamic reversibility of the coordination chains appears to play a role. The resulting gel exhibits circularly polarised luminescence (CPL) with a large dissymmetry factor of -0.07 ± 0.01 at 735 nm, a phenomenon not previously observed for this class of coordination polymer.

3.
Faraday Discuss ; 232(0): 282-294, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34555137

ABSTRACT

Acyl transfer from lipids to membrane-associated peptides is a well-documented process, leading to the generation of a lipidated peptide and a lysolipid. In this article, we demonstrate that acyl transfer from lysophosphatidylcholines (lysoPCs) to the peptide melittin also occurs, both in micelles of pure lysolipid and in lipid/lysolipid mixtures. In the case of bilayers containing lysolipids, acyl transfer from the lysolipid is marginally favoured over transfer from the lipid. In pure bilayers of saturated lipids, the introduction of even small amounts of lysolipid appears to significantly increase the reactivity towards lipidation.


Subject(s)
Lysophospholipids , Micelles , Lipid Bilayers , Peptides
4.
Sci Adv ; 6(17): eaaz8598, 2020 04.
Article in English | MEDLINE | ID: mdl-32426467

ABSTRACT

Several organic molecules of low molecular weight (<150 Da) are demonstrated to have substantial membrane-lytic potential despite having a low predicted lipophilicity (logD < 1 at neutral pH). In aqueous liposome dispersions, 38 aromatic compounds were tested for their ability to either promote lipid hydrolysis or directly participate in chemical reactions with lipid molecules. Behaviors observed included acyl transfer from the lipid to form a lipidated compound, both with and without concomitant lysolipid formation; increases in the rate of lipid hydrolysis without lipidation; and no reactivity. The variation in activity, including a notably higher activity for heterocycles such as amino-substituted benzimidazoles and indazoles, demonstrates the potential to predict or "design-in" lytic activity once the rules that govern reactivity are better understood. The nature of this chemical instability has significant ramifications for the use or presence of lipids in diverse fields such as materials chemistry, food chemistry, and cell physiology.

5.
Bioconjug Chem ; 31(2): 229-240, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31751113

ABSTRACT

The syntheses and photophysical behavior of nine strongly luminescent nonadentate Eu(III) complexes are reported. Each complex is based on N-functionalized 1,4,7-triazacyclononane, and linkage to other groups or targeting vectors can occur either via amide bond formation to a coordinated pyridine p-aminopropyl group or via a nucleophilic substitution reaction involving thiol attack on a metal coordinated p-nitropyridyl moiety. Evidence is presented in favor of the latter conjugation strategy, as parallel work with maleimide conjugates was complicated or compromised by the propensity to undergo post-conjugation thiol exchange or succinimide ring hydrolysis reactions. Confocal microscopy and spectral imaging studies revealed that the peptide conjugate of AcCFFKDEL was found to localize selectively in the endoplasmic reticulum of mouse fibroblast cells, whereas the related maleimide conjugate was only observed in cellular lysosomes.


Subject(s)
Coordination Complexes/analysis , Endoplasmic Reticulum/ultrastructure , Europium/analysis , Luminescent Agents/analysis , Peptides/analysis , Animals , Fibroblasts/ultrastructure , Maleimides/analysis , Mice , Microscopy, Confocal , NIH 3T3 Cells , Optical Imaging , Organelles
6.
Chem Sci ; 10(3): 674-680, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30774868

ABSTRACT

Propranolol is shown to undergo lipidation reactions in three types of lipid membrane: (1) synthetic single-component glycerophospholipid liposomes; (2) liposomes formed from complex lipid mixtures extracted from E. coli or liver cells; and (3) in cellulo in Hep G2 cells. Fourteen different lipidated propranolol homologues were identified in extracts from Hep G2 cells cultured in a medium supplemented with propranolol. This isolation of lipidated drug molecules from liver cells demonstrates a new drug reactivity in living systems. Acyl transfer from lipids to the alcoholic group of propranolol was favoured over transfer to the secondary amine. Migration of acyl groups from the alcohol to the amine was diminished. Other drugs that were examined did not form detectable levels of lipidation products, but many of these drugs did affect the lysolipid levels in model membranes. The propensity for a compound to induce lysolipid formation in a model system was found to be a predictor for phospholipidosis activity in cellulo.

7.
Inorg Chem ; 58(5): 3015-3025, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30776218

ABSTRACT

The design, synthesis, and application of a nine-coordinate gadolinium(III)-containing spin label, [Gd.sTPATCN]-SL, for use in nanometer-distance measurement experiments by EPR spectroscopy is presented. The spin label links to cysteines via a short thioether tether and has a narrow central transition indicative of small zero-field splitting (ZFS). A protein homodimer, TRIM25cc, was selectively labeled with [Gd.sTPATCN]-SL (70%) and a nitroxide (30%) under mild conditions and measured using the double electron electron resonance (DEER) technique with both commercial Q-band and home-built W-band spectrometers. The label shows great promise for increasing the sensitivity of DEER measurements through both its favorable relaxation parameters and the large DEER modulation depth at both Q- and W-band for the inter-Gd(III) DEER measurement which, at 9%, is the largest recorded under these conditions.

8.
Phys Chem Chem Phys ; 21(2): 631-640, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30540307

ABSTRACT

The effects of cholesterol on the process of intrinsic lipidation, whereby an acyl chain is transferred from a lipid as donor to a membrane-associated acceptor molecule, have been explored using melittin as the acceptor. Membranes comprising lipids with saturated acyl chains (1,2-dipalmitoyl sn-glycero-3-phosphocholine, DPPC; 1,2-dimyristoyl sn-glycero-3-phosphocholine, DMPC) yielded no acyl transfer, whereas membranes composed of lipids with unsaturated acyl chains (1,2-dioleoyl sn-glycero-3-phosphocholine, DOPC; 1-palmitoyl-2-oleoyl sn-glycero-3-phosphocholine, POPC) produced detectable lipidation activity. For all lipids, inclusion of cholesterol led to a significant increase in lipidation activity, with the greatest effect observed for 20 mol% cholesterol in POPC. In the case of membranes composed of POPC, the inclusion of cholesterol also produced small changes in the selectivity for transfer from the sn-1 vs. sn-2 positions of the lipid. Qualitatively, for fluid membranes, the trend in lipidation activity exhibits a positive correlation with the bending modulus of the bilayer and is accounted for in terms of the penetration depth of the peptide. Access of water to reactive intermediates also has the potential to influence lipidation rates.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Lipids/chemistry , Lipid Bilayers/metabolism , Melitten/chemistry
9.
Eur J Mass Spectrom (Chichester) ; 24(1): 74-80, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29233000

ABSTRACT

A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.

10.
Mass Spectrom Rev ; 37(4): 565-579, 2018 07.
Article in English | MEDLINE | ID: mdl-28627748

ABSTRACT

The application of on-line mass spectrometry for direct analysis of chemical and other types of process continues to grow in importance and impact. The ability of the technique to characterize many aspects of a chemical reaction such as product and impurity formation, along with reactant consumption in a single experiment is key to its adoption and development. Innovations in ionization techniques and mass spectrometry instrumentation are enabling this adoption. An increasing range of ambient ionization techniques make on-line mass spectrometry applicable to a large range of chemistries. The academic development and commercialization of small footprint portable/transportable mass spectrometers is providing technology that can be positioned with any process under investigation. These developments, coupled with research into new ways of sampling representatively from both the condensed and gaseous phases, are positioning mass spectrometry as an essential technology for on-line process optimization, understanding and intelligent control. It is recognized that quantitative capability of mass spectrometry in this application can cause some resistance to its adoption, but research activities to tackle this limitation are on-going.

11.
J Biol Chem ; 292(29): 12208-12219, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28578314

ABSTRACT

Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote.


Subject(s)
Endoplasmic Reticulum/enzymology , Models, Molecular , Phylogeny , Protozoan Proteins/metabolism , Serine C-Palmitoyltransferase/metabolism , Toxoplasma/enzymology , Amino Acid Sequence , Catalytic Domain , Computational Biology , Conserved Sequence , Dimerization , Gene Deletion , Gene Duplication , Gene Transfer, Horizontal , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Protein Transport , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Serine C-Palmitoyltransferase/chemistry , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/isolation & purification , Structural Homology, Protein
12.
Rapid Commun Mass Spectrom ; 30(19): 2155-63, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27479882

ABSTRACT

RATIONALE: Tandem mass spectrometry of phosphorylated ions can often yield a limited number of product ions owing to the labile nature of phosphate groups. Developing techniques to improve dissociation for this type of ion has implications for the structural characterisation of many different phosphorylated ions, such as those from nucleotides, pharmaceutical compounds, peptides and polymers. METHODS: Solutions of adenosine monophosphate, diphosphate and triphosphate (AMP, ADP and ATP) were studied in a hybrid linear ion trap-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Precursor ions with an overall single positive charge, including protonated nucleotides or nucleotide cations containing one, two or three sodium atoms, were isolated for tandem mass spectrometry. Collision-induced dissociation (CID) was performed in the linear ion trap, with electron-induced dissociation (EID) being conducted in the FTICR cell. RESULTS: EID resulted in many product ions not seen in CID. EID product ion spectra were seen to vary for AMP, ADP and ATP when the nucleotide cation contained zero, one, two or three sodiums. Precursor cations that contain two or three sodiums mainly formed product ions derived from the phosphate group. Conversely, when a precursor ion containing no sodium underwent EID, product ions mainly relating to the non-phosphate end of the ion were observed. The number of phosphate groups was not seen to greatly affect either CID or EID product ion spectra. CONCLUSIONS: The presence of sodium in a precursor ion directs electron-induced bond dissociation, thus enabling targeted, and therefore tuneable, fragmentation of groups within that precursor ion. For all precursor ions, the most useful product ion spectra were obtained by EID for a precursor ion containing one sodium, with bond dissociation occurring across the entire nucleotide cation. The findings of this study can be used to improve the structural elucidation of many phosphorylated molecules by broadening the range of product ions achievable. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.


Subject(s)
Nucleotides/chemistry , Tandem Mass Spectrometry/methods , Cations/chemistry , Molecular Structure , Phosphorylation
13.
J Pharm Sci ; 105(10): 3073-3078, 2016 10.
Article in English | MEDLINE | ID: mdl-27431013

ABSTRACT

Salicylsalicylic acid ("Salsalate") is a non-steroidal anti-inflammatory drug with anti-rheumatic properties, whose amorphous form offers the potential for enhanced dissolution rates and improved bioavailability compared with its crystalline counterpart. It has been reported to form a stable glassy phase on heating and rapid quenching. A number of the existing studies of the solid-state structure of salsalate and of its thermal decomposition contain information that is difficult to reconcile. In this article, we review much of the existing literature in light of our own recent studies using solution-state nuclear magnetic resonance, mass spectrometry, and solid-state infrared spectroscopy, and conclude that much of the literature data relating to melting and the glassy state is questionable due to failure to take into account the effects of thermal decomposition.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Salicylates/analysis , Salicylates/chemistry , Calorimetry, Differential Scanning/methods , Magnetic Resonance Spectroscopy/methods , Spectroscopy, Fourier Transform Infrared/methods , Tandem Mass Spectrometry/methods
14.
Biochim Biophys Acta ; 1858(11): 2763-2768, 2016 11.
Article in English | MEDLINE | ID: mdl-27378310

ABSTRACT

The lens fiber major intrinsic protein (otherwise known as aquaporin-0 (AQP0), MIP26 and MP26) has been examined by mass spectrometry (MS) in order to determine the speciation of acyl modifications to the side chains of lysine residues and the N-terminal amino group. The speciation of acyl modifications to the side chain of one specific, highly conserved lysine residue (K238) and the N-terminal amino group of human and bovine AQP0 revealed, in decreasing order of abundance, oleoyl, palmitoyl, stearoyl, eicosenoyl, dihomo-γ-linolenoyl, palmitoleoyl and eicosadienoyl modifications. In the case of human AQP0, an arachidonoyl modification was also found at the N-terminus. The relative abundances of these modifications mirror the fatty acid composition of lens phosphatidylethanolamine lipids. This lipid class would be expected to be concentrated in the inner leaflet of the lens fiber membrane to which each of the potential AQP0 lipidation sites is proximal. Our data evidence a broad lipidation profile that is both species and site independent, suggesting a chemical-based ester aminolysis mechanism to explain such modifications.


Subject(s)
Aquaporins/metabolism , Arachidonic Acids/metabolism , Ethanolamines/metabolism , Eye Proteins/metabolism , Lens, Crystalline/metabolism , Protein Processing, Post-Translational , Animals , Aquaporins/genetics , Cattle , Ethanolamines/chemistry , Eye Proteins/genetics , Gene Expression , Humans , Lens, Crystalline/chemistry , Lipoylation , Membranes , Young Adult
15.
Rapid Commun Mass Spectrom ; 29(7): 698-700, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-26212290
16.
Rapid Commun Mass Spectrom ; 28(18): 2024-30, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25132303

ABSTRACT

RATIONALE: The atmospheric pressure solids analysis probe (ASAP) has been successfully introduced into laboratories as a routine analytical tool but the technique is labour-intensive and is not easily automated. This paper describes the modifications made to an existing atmospheric pressure gas chromatography (APGC) system to enable the automated analysis of samples that would have otherwise been analysed by ASAP. METHODS: Liquid samples were injected into a 1 m piece of fused silica guard column using a standard split/splitless gas chromatography (GC) inlet, oven and autosampler. A novel timing delay circuit was developed and integrated into the system to control acquisition start times and a bespoke heating block/calibrant delivery system was used to transport either the calibration or reference compound into the ionisation source. RESULTS: The modified system has allowed the successful analysis of those samples requiring ASAP to be carried out in a fully automated manner using APGc. The analysis is rapid and can be carried out in less than 2 min. The results obtained are directly comparable with those obtained by ASAP. A typical mass accuracy of better than 5 mm/z units was achieved, allowing the molecules to be identified based on their elemental formulae. CONCLUSIONS: An existing APGC system has been successfully modified and is suitable for the automatic analysis of samples normally analysed by ASAP. The APGC instrument incorporates the use of a novel reference compound and delivery system which allows accurate mass measurements to be performed. This and the other modifications described have allowed the technique to be incorporated into an existing suite of mass spectrometry-based experiments for use in the characterisation of organic molecules.

17.
J Mol Biol ; 425(22): 4379-87, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23871685

ABSTRACT

The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography-mass spectrometry analysis of peptide-lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins.


Subject(s)
Cell Membrane/chemistry , Membrane Lipids/chemistry , Peptides/chemistry , Phospholipids/chemistry , Antimicrobial Cationic Peptides/analysis , Antimicrobial Cationic Peptides/chemistry , Cell Membrane/metabolism , Chromatography, Liquid , Magainins/analysis , Magainins/chemistry , Mass Spectrometry , Melitten/analysis , Melitten/chemistry , Membrane Lipids/analysis , Peptides/analysis , Phospholipids/analysis
18.
Analyst ; 137(19): 4524-30, 2012 Oct 07.
Article in English | MEDLINE | ID: mdl-22890238

ABSTRACT

Atmospheric pressure Solids Analysis Probe (ASAP) mass spectrometry has facilitated the ionisation of oligomers from low molecular weight synthetic polymers, poly(ethylene glycol) (PEG: M(n) = 1430) and poly(styrene) (PS: M(n) = 1770), directly from solids, providing a fast and efficient method of identification. Ion source conditions were evaluated and it was found that the key instrument parameter was the ion source desolvation temperature which, when set to 600 °C was sufficient to vapourise the heavier oligomers for ionisation. PS, a non-polar polymer that is very challenging to analyse by MALDI or ESI without the aid of metal salts to promote cationisation, was ionised promptly by ASAP resulting in the production of radical cations. A small degree of in-source dissociation could be eliminated by control of the instrument ion source voltages. The fragmentation observed through in-source dissociation could be duplicated in a controlled manner through Collision-Induced Dissociation (CID) of the radical cations. PEG, which preferentially ionises through adduction with alkali metal cations in MALDI and ESI, was observed as a protonated molecular ion by ASAP. In-source dissociation could not be eliminated entirely and the fragmentation observed resulted from cleavage of the C-C and C-O backbone bonds, as opposed to only C-O bond cleavage observed from tandem mass spectrometry.

19.
Org Biomol Chem ; 10(28): 5371-8, 2012 Jul 28.
Article in English | MEDLINE | ID: mdl-22407502

ABSTRACT

The innate reactivity of the peptide melittin (H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH(2)) towards membrane lipids has been explored using LC-MS methods. The high sensitivity afforded by LC-MS analysis enabled acyl transfer to the peptide to be detected, within 4 h, from membranes composed of phosphocholines (PCs). Acyl transfer from PCs was also observed from mixtures of PC with phosphoserine (PS) or phosphoglycerol (PG). In the latter case, transfer from PG was also detected. The half-lives for melittin conversion varied between 24 h and 75 h, being fastest for POPC and slowest for DOPC/DMPG mixtures. The order of reactivity for amino groups on the peptide was N-terminus > K23 ≫ K21 > K7. Products arising from double-acylation of melittin were detected as minor components, together with a putative component derived from transesterification involving S18 of the peptide.


Subject(s)
Melitten/chemistry , Melitten/metabolism , Membrane Lipids/metabolism , Phospholipids/metabolism , Amino Acid Sequence , Chromatography, Liquid , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Phosphatidylcholines/metabolism , Phosphatidylglycerols/metabolism , Phosphatidylserines/metabolism
20.
J Am Soc Mass Spectrom ; 23(5): 850-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22290485

ABSTRACT

LC ESI FTICR MS of a sample of cediranib identified this pharmaceutical target molecule plus an additional 10 compounds of interest, all of which were less than 10% total ion current (TIC) peak intensity relative to cediranib. LC FTICR tandem mass spectrometry using electron induced dissociation (EID) has been achieved and has proven to be the best way to generate useful product ion information for all of these singly protonated molecules. Cediranib [M + H](+) fragmented by EID to give 29 product ions whereas QTOF-CID generated only one very intense product ion, and linear ion trap-CID, which generated 10 product ions, but all with poor S/N. Twenty-six of the EID product ions were unique to this fragmentation technique alone. By considering the complementary LC-EID and LC-CID data together, all 10 unknown compounds were structurally characterized and proven to be analogous to cediranib. Of particular importance, EID produced unique product ion information for one of the low level cediranib analogues that enabled full characterization of the molecule such that the presence of an extra propylpyrrolidine group was discovered and proven to be located on the pyrrolidine ring of cediranib, solving an analytical problem that could not be solved by collision induced dissociation (CID). Thus, it has been demonstrated that EID is in harmony with the chromatography duty-cycle and the dynamic concentration range of synthetic compounds containing trace impurities, providing crucial analytical information that cannot be obtained by more traditional methodologies.


Subject(s)
Chromatography, Liquid/methods , Models, Chemical , Pharmaceutical Preparations/chemistry , Tandem Mass Spectrometry/methods , Chemistry, Organic/methods , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...