Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Cell Rep ; 43(7): 114417, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38980795

ABSTRACT

The ability to sense and respond to osmotic fluctuations is critical for the maintenance of cellular integrity. We used gene co-essentiality analysis to identify an unappreciated relationship between TSC22D2, WNK1, and NRBP1 in regulating cell volume homeostasis. All of these genes have paralogs and are functionally buffered for osmo-sensing and cell volume control. Within seconds of hyperosmotic stress, TSC22D, WNK, and NRBP family members physically associate into biomolecular condensates, a process that is dependent on intrinsically disordered regions (IDRs). A close examination of these protein families across metazoans revealed that TSC22D genes evolved alongside a domain in NRBPs that specifically binds to TSC22D proteins, which we have termed NbrT (NRBP binding region with TSC22D), and this co-evolution is accompanied by rapid IDR length expansion in WNK-family kinases. Our study reveals that TSC22D, WNK, and NRBP genes evolved in metazoans to co-regulate rapid cell volume changes in response to osmolarity.

2.
Methods Mol Biol ; 2800: 217-229, 2024.
Article in English | MEDLINE | ID: mdl-38709487

ABSTRACT

High-throughput microscopy has enabled screening of cell phenotypes at unprecedented scale. Systematic identification of cell phenotype changes (such as cell morphology and protein localization changes) is a major analysis goal. Because cell phenotypes are high-dimensional, unbiased approaches to detect and visualize the changes in phenotypes are still needed. Here, we suggest that changes in cellular phenotype can be visualized in reduced dimensionality representations of the image feature space. We describe a freely available analysis pipeline to visualize changes in protein localization in feature spaces obtained from deep learning. As an example, we use the pipeline to identify changes in subcellular localization after the yeast GFP collection was treated with hydroxyurea.


Subject(s)
Image Processing, Computer-Assisted , Phenotype , Image Processing, Computer-Assisted/methods , High-Throughput Screening Assays/methods , Microscopy/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Deep Learning , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Hydroxyurea/pharmacology
3.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38588559

ABSTRACT

MOTIVATION: Supervised deep learning is used to model the complex relationship between genomic sequence and regulatory function. Understanding how these models make predictions can provide biological insight into regulatory functions. Given the complexity of the sequence to regulatory function mapping (the cis-regulatory code), it has been suggested that the genome contains insufficient sequence variation to train models with suitable complexity. Data augmentation is a widely used approach to increase the data variation available for model training, however current data augmentation methods for genomic sequence data are limited. RESULTS: Inspired by the success of comparative genomics, we show that augmenting genomic sequences with evolutionarily related sequences from other species, which we term phylogenetic augmentation, improves the performance of deep learning models trained on regulatory genomic sequences to predict high-throughput functional assay measurements. Additionally, we show that phylogenetic augmentation can rescue model performance when the training set is down-sampled and permits deep learning on a real-world small dataset, demonstrating that this approach improves data efficiency. Overall, this data augmentation method represents a solution for improving model performance that is applicable to many supervised deep-learning problems in genomics. AVAILABILITY AND IMPLEMENTATION: The open-source GitHub repository agduncan94/phylogenetic_augmentation_paper includes the code for rerunning the analyses here and recreating the figures.


Subject(s)
Deep Learning , Genomics , Phylogeny , Genomics/methods , Supervised Machine Learning , Humans
4.
Proc Natl Acad Sci U S A ; 120(44): e2304302120, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37878721

ABSTRACT

The AlphaFold Protein Structure Database contains predicted structures for millions of proteins. For the majority of human proteins that contain intrinsically disordered regions (IDRs), which do not adopt a stable structure, it is generally assumed that these regions have low AlphaFold2 confidence scores that reflect low-confidence structural predictions. Here, we show that AlphaFold2 assigns confident structures to nearly 15% of human IDRs. By comparison to experimental NMR data for a subset of IDRs that are known to conditionally fold (i.e., upon binding or under other specific conditions), we find that AlphaFold2 often predicts the structure of the conditionally folded state. Based on databases of IDRs that are known to conditionally fold, we estimate that AlphaFold2 can identify conditionally folding IDRs at a precision as high as 88% at a 10% false positive rate, which is remarkable considering that conditionally folded IDR structures were minimally represented in its training data. We find that human disease mutations are nearly fivefold enriched in conditionally folded IDRs over IDRs in general and that up to 80% of IDRs in prokaryotes are predicted to conditionally fold, compared to less than 20% of eukaryotic IDRs. These results indicate that a large majority of IDRs in the proteomes of human and other eukaryotes function in the absence of conditional folding, but the regions that do acquire folds are more sensitive to mutations. We emphasize that the AlphaFold2 predictions do not reveal functionally relevant structural plasticity within IDRs and cannot offer realistic ensemble representations of conditionally folded IDRs.


Subject(s)
Intrinsically Disordered Proteins , Humans , Intrinsically Disordered Proteins/chemistry , Eukaryota/metabolism , Protein Conformation
5.
Chem Rev ; 123(14): 9036-9064, 2023 07 26.
Article in English | MEDLINE | ID: mdl-36662637

ABSTRACT

Stress granules (SGs) are cytosolic biomolecular condensates that form in response to cellular stress. Weak, multivalent interactions between their protein and RNA constituents drive their rapid, dynamic assembly through phase separation coupled to percolation. Though a consensus model of SG function has yet to be determined, their perceived implication in cytoprotective processes (e.g., antiviral responses and inhibition of apoptosis) and possible role in the pathogenesis of various neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and frontotemporal dementia) have drawn great interest. Consequently, new studies using numerous cell biological, genetic, and proteomic methods have been performed to unravel the mechanisms underlying SG formation, organization, and function and, with them, a more clearly defined SG proteome. Here, we provide a consensus SG proteome through literature curation and an update of the user-friendly database RNAgranuleDB to version 2.0 (http://rnagranuledb.lunenfeld.ca/). With this updated SG proteome, we use next-generation phase separation prediction tools to assess the predisposition of SG proteins for phase separation and aggregation. Next, we analyze the primary sequence features of intrinsically disordered regions (IDRs) within SG-resident proteins. Finally, we review the protein- and RNA-level determinants, including post-translational modifications (PTMs), that regulate SG composition and assembly/disassembly dynamics.


Subject(s)
Amyotrophic Lateral Sclerosis , Proteome , Humans , Proteomics , Stress Granules , Amyotrophic Lateral Sclerosis/pathology , RNA
6.
Nat Neurosci ; 25(10): 1353-1365, 2022 10.
Article in English | MEDLINE | ID: mdl-36171426

ABSTRACT

The precise regulation of gene expression is fundamental to neurodevelopment, plasticity and cognitive function. Although several studies have profiled transcription in the developing human brain, there is a gap in understanding of accompanying translational regulation. In this study, we performed ribosome profiling on 73 human prenatal and adult cortex samples. We characterized the translational regulation of annotated open reading frames (ORFs) and identified thousands of previously unknown translation events, including small ORFs that give rise to human-specific and/or brain-specific microproteins, many of which we independently verified using proteomics. Ribosome profiling in stem-cell-derived human neuronal cultures corroborated these findings and revealed that several neuronal activity-induced non-coding RNAs encode previously undescribed microproteins. Physicochemical analysis of brain microproteins identified a class of proteins that contain arginine-glycine-glycine (RGG) repeats and, thus, may be regulators of RNA metabolism. This resource expands the known translational landscape of the human brain and illuminates previously unknown brain-specific protein products.


Subject(s)
Gene Expression Regulation , Protein Biosynthesis , Adult , Arginine/genetics , Arginine/metabolism , Brain/metabolism , Glycine , Humans , RNA, Messenger/metabolism
7.
PLoS Comput Biol ; 18(9): e1010452, 2022 09.
Article in English | MEDLINE | ID: mdl-36074804

ABSTRACT

Constraint-based modeling is a powerful framework for studying cellular metabolism, with applications ranging from predicting growth rates and optimizing production of high value metabolites to identifying enzymes in pathogens that may be targeted for therapeutic interventions. Results from modeling experiments can be affected at least in part by the quality of the metabolic models used. Reconstructing a metabolic network manually can produce a high-quality metabolic model but is a time-consuming task. At the same time, current methods for automating the process typically transfer metabolic function based on sequence similarity, a process known to produce many false positives. We created Architect, a pipeline for automatic metabolic model reconstruction from protein sequences. First, it performs enzyme annotation through an ensemble approach, whereby a likelihood score is computed for an EC prediction based on predictions from existing tools; for this step, our method shows both increased precision and recall compared to individual tools. Next, Architect uses these annotations to construct a high-quality metabolic network which is then gap-filled based on likelihood scores from the ensemble approach. The resulting metabolic model is output in SBML format, suitable for constraints-based analyses. Through comparisons of enzyme annotations and curated metabolic models, we demonstrate improved performance of Architect over other state-of-the-art tools, notably with higher precision and recall on the eukaryote C. elegans and when compared to UniProt annotations in two bacterial species. Code for Architect is available at https://github.com/ParkinsonLab/Architect. For ease-of-use, Architect can be readily set up and utilized using its Docker image, maintained on Docker Hub.


Subject(s)
Caenorhabditis elegans , Metabolic Networks and Pathways , Animals , Bacteria , Molecular Sequence Annotation
8.
Curr Opin Genet Dev ; 76: 101964, 2022 10.
Article in English | MEDLINE | ID: mdl-35939968

ABSTRACT

Evolutionary preservation of protein structure had a major influence on the field of molecular evolution: changes in individual amino acids that did not disrupt protein folding would either have no effect or subtly change the 'lock' so that it could fit a new 'key'. Homology of individual amino acids could be confidently assigned through sequence alignments, and models of evolution could be tested. This view of molecular evolution excluded large regions of proteins that could not be confidently aligned, such as intrinsically disordered regions (IDRs) that do not fold into stable structures. In the last decade, major progress has been made in understanding the evolution of IDRs, much of it facilitated by new experimental and computational approaches in yeast. Here, we review this progress as well as several still outstanding questions.


Subject(s)
Proteins , Saccharomyces cerevisiae , Amino Acids , Evolution, Molecular , Protein Folding , Proteins/metabolism , Saccharomyces cerevisiae/genetics
9.
PLoS Comput Biol ; 18(6): e1010238, 2022 06.
Article in English | MEDLINE | ID: mdl-35767567

ABSTRACT

A major challenge to the characterization of intrinsically disordered regions (IDRs), which are widespread in the proteome, but relatively poorly understood, is the identification of molecular features that mediate functions of these regions, such as short motifs, amino acid repeats and physicochemical properties. Here, we introduce a proteome-scale feature discovery approach for IDRs. Our approach, which we call "reverse homology", exploits the principle that important functional features are conserved over evolution. We use this as a contrastive learning signal for deep learning: given a set of homologous IDRs, the neural network has to correctly choose a held-out homolog from another set of IDRs sampled randomly from the proteome. We pair reverse homology with a simple architecture and standard interpretation techniques, and show that the network learns conserved features of IDRs that can be interpreted as motifs, repeats, or bulk features like charge or amino acid propensities. We also show that our model can be used to produce visualizations of what residues and regions are most important to IDR function, generating hypotheses for uncharacterized IDRs. Our results suggest that feature discovery using unsupervised neural networks is a promising avenue to gain systematic insight into poorly understood protein sequences.


Subject(s)
Intrinsically Disordered Proteins , Proteome , Amino Acid Sequence , Evolution, Molecular , Intrinsically Disordered Proteins/chemistry , Protein Conformation , Proteome/metabolism
10.
FEBS J ; 289(3): 647-658, 2022 02.
Article in English | MEDLINE | ID: mdl-33570798

ABSTRACT

Although the quantity and quality of single-cell data have progressed rapidly, making quantitative predictions with single-cell stochastic models remains challenging. The stochastic nature of cellular processes leads to at least three challenges in building models with single-cell data: (a) because variability in single-cell data can be attributed to multiple different sources, it is difficult to rule out conflicting mechanistic models that explain the same data equally well; (b) the distinction between interesting biological variability and experimental variability is sometimes ambiguous; (c) the nonstandard distributions of single-cell data can lead to violations of the assumption of symmetric errors in least-squares fitting. In this review, we first discuss recent studies that overcome some of the challenges or set up a promising direction and then introduce some powerful statistical approaches utilized in these studies. We conclude that applying and developing statistical approaches could lead to further progress in building stochastic models for single-cell data.


Subject(s)
Models, Biological , Single-Cell Analysis/methods , Stochastic Processes , Computer Simulation
11.
NPJ Genom Med ; 6(1): 91, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34737294

ABSTRACT

Autism Spectrum Disorder (ASD) is genetically complex with ~100 copy number variants and genes involved. To try to establish more definitive genotype and phenotype correlations in ASD, we searched genome sequence data, and the literature, for recurrent predicted damaging sequence-level variants affecting single genes. We identified 18 individuals from 16 unrelated families carrying a heterozygous guanine duplication (c.3679dup; p.Ala1227Glyfs*69) occurring within a string of 8 guanines (genomic location [hg38]g.50,721,512dup) affecting SHANK3, a prototypical ASD gene (0.08% of ASD-affected individuals carried the predicted p.Ala1227Glyfs*69 frameshift variant). Most probands carried de novo mutations, but five individuals in three families inherited it through somatic mosaicism. We scrutinized the phenotype of p.Ala1227Glyfs*69 carriers, and while everyone (17/17) formally tested for ASD carried a diagnosis, there was the variable expression of core ASD features both within and between families. Defining such recurrent mutational mechanisms underlying an ASD outcome is important for genetic counseling and early intervention.

12.
PLoS Genet ; 17(9): e1009629, 2021 09.
Article in English | MEDLINE | ID: mdl-34506483

ABSTRACT

Stochastic signaling dynamics expand living cells' information processing capabilities. An increasing number of studies report that regulators encode information in their pulsatile dynamics. The evolutionary mechanisms that lead to complex signaling dynamics remain uncharacterized, perhaps because key interactions of signaling proteins are encoded in intrinsically disordered regions (IDRs), whose evolution is difficult to analyze. Here we focused on the IDR that controls the stochastic pulsing dynamics of Crz1, a transcription factor in fungi downstream of the widely conserved calcium signaling pathway. We find that Crz1 IDRs from anciently diverged fungi can all respond transiently to calcium stress; however, only Crz1 IDRs from the Saccharomyces clade support pulsatility, encode extra information, and rescue fitness in competition assays, while the Crz1 IDRs from distantly related fungi do none of the three. On the other hand, we find that Crz1 pulsing is conserved in the distantly related fungi, consistent with the evolutionary model of stabilizing selection on the signaling phenotype. Further, we show that a calcineurin docking site in a specific part of the IDRs appears to be sufficient for pulsing and show evidence for a beneficial increase in the relative calcineurin affinity of this docking site. We propose that evolutionary flexibility of functionally divergent IDRs underlies the conservation of stochastic signaling by stabilizing selection.


Subject(s)
Intrinsically Disordered Proteins/metabolism , Signal Transduction , Stochastic Processes , DNA-Binding Proteins/metabolism , Evolution, Molecular , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
13.
Genome Res ; 31(4): 564-575, 2021 04.
Article in English | MEDLINE | ID: mdl-33712417

ABSTRACT

Transcriptional enhancers are critical for development and phenotype evolution and are often mutated in disease contexts; however, even in well-studied cell types, the sequence code conferring enhancer activity remains unknown. To examine the enhancer regulatory code for pluripotent stem cells, we identified genomic regions with conserved binding of multiple transcription factors in mouse and human embryonic stem cells (ESCs). Examination of these regions revealed that they contain on average 12.6 conserved transcription factor binding site (TFBS) sequences. Enriched TFBSs are a diverse repertoire of 70 different sequences representing the binding sequences of both known and novel ESC regulators. Using a diverse set of TFBSs from this repertoire was sufficient to construct short synthetic enhancers with activity comparable to native enhancers. Site-directed mutagenesis of conserved TFBSs in endogenous enhancers or TFBS deletion from synthetic sequences revealed a requirement for 10 or more different TFBSs. Furthermore, specific TFBSs, including the POU5F1:SOX2 comotif, are dispensable, despite cobinding the POU5F1 (also known as OCT4), SOX2, and NANOG master regulators of pluripotency. These findings reveal that a TFBS sequence diversity threshold overrides the need for optimized regulatory grammar and individual TFBSs that recruit specific master regulators.


Subject(s)
Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Transcription Factors/metabolism , Animals , Binding Sites , Humans , Mice , Pluripotent Stem Cells/metabolism
14.
Elife ; 102021 02 22.
Article in English | MEDLINE | ID: mdl-33616531

ABSTRACT

In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al., 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.


Subject(s)
Intrinsically Disordered Proteins/metabolism , Proteome/metabolism , Amino Acid Sequence , Hydrophobic and Hydrophilic Interactions , Intrinsically Disordered Proteins/chemistry , Isoelectric Point , Mitochondria/metabolism , Models, Statistical , Proteome/chemistry , Saccharomyces cerevisiae/metabolism
15.
Cell ; 183(7): 1742-1756, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33357399

ABSTRACT

It is unclear how disease mutations impact intrinsically disordered protein regions (IDRs), which lack a stable folded structure. These mutations, while prevalent in disease, are frequently neglected or annotated as variants of unknown significance. Biomolecular phase separation, a physical process often mediated by IDRs, has increasingly appreciated roles in cellular organization and regulation. We find that autism spectrum disorder (ASD)- and cancer-associated proteins are enriched for predicted phase separation propensities, suggesting that IDR mutations disrupt phase separation in key cellular processes. More generally, we hypothesize that combinations of small-effect IDR mutations perturb phase separation, potentially contributing to "missing heritability" in complex disease susceptibility.


Subject(s)
Disease/genetics , Mutation/genetics , Chromatin/metabolism , Humans , Intrinsically Disordered Proteins/genetics , Models, Biological , Proteome/metabolism
16.
Diabetes Obes Metab ; 22(12): 2248-2256, 2020 12.
Article in English | MEDLINE | ID: mdl-32996693

ABSTRACT

AIMS: The ability to differentiate patient populations with type 2 diabetes at high risk of severe hypoglycaemia could impact clinical decision making. The aim of this study was to develop a risk score, using patient characteristics, that could differentiate between populations with higher and lower 2-year risk of severe hypoglycaemia among individuals at increased risk of cardiovascular disease. MATERIALS AND METHODS: Two models were developed for the risk score based on data from the DEVOTE cardiovascular outcomes trials. The first, a data-driven machine-learning model, used stepwise regression with bidirectional elimination to identify risk factors for severe hypoglycaemia. The second, a risk score based on known clinical risk factors accessible in clinical practice identified from the data-driven model, included: insulin treatment regimen; diabetes duration; sex; age; and glycated haemoglobin, all at baseline. Both the data-driven model and simple risk score were evaluated for discrimination, calibration and generalizability using data from DEVOTE, and were validated against the external LEADER cardiovascular outcomes trial dataset. RESULTS: Both the data-driven model and the simple risk score discriminated between patients at higher and lower hypoglycaemia risk, and performed similarly well based on the time-dependent area under the curve index (0.63 and 0.66, respectively) over a 2-year time horizon. CONCLUSIONS: Both the data-driven model and the simple hypoglycaemia risk score were able to discriminate between patients at higher and lower risk of severe hypoglycaemia, the latter doing so using easily accessible clinical data. The implementation of such a tool (http://www.hyporiskscore.com/) may facilitate improved recognition of, and education about, severe hypoglycaemia risk, potentially improving patient care.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Glycated Hemoglobin/analysis , Humans , Hypoglycemia/chemically induced , Hypoglycemia/epidemiology , Hypoglycemic Agents/adverse effects , Insulin Glargine , Risk Factors
17.
Biochem Soc Trans ; 48(5): 2151-2158, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32985656

ABSTRACT

What do we know about the molecular evolution of functional protein condensation? The capacity of proteins to form biomolecular condensates (compact, protein-rich states, not bound by membranes, but still separated from the rest of the contents of the cell) appears in many cases to be bestowed by weak, transient interactions within one or between proteins. Natural selection is expected to remove or fix amino acid changes, insertions or deletions that preserve and change this condensation capacity when doing so is beneficial to the cell. A few recent studies have begun to explore this frontier of phylogenetics at the intersection of biophysics and cell biology.


Subject(s)
Biophysics/methods , Evolution, Molecular , Phylogeny , Proteins/chemistry , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Biophysical Phenomena , Caenorhabditis elegans , Cell Biology , DEAD-box RNA Helicases/chemistry , Gene Deletion , Humans , Models, Biological , Multigene Family , Mutation , Protein Interaction Mapping , Saccharomyces cerevisiae
18.
Science ; 368(6498)2020 06 26.
Article in English | MEDLINE | ID: mdl-32586993

ABSTRACT

Whole-genome duplication has played a central role in the genome evolution of many organisms, including the human genome. Most duplicated genes are eliminated, and factors that influence the retention of persisting duplicates remain poorly understood. We describe a systematic complex genetic interaction analysis with yeast paralogs derived from the whole-genome duplication event. Mapping of digenic interactions for a deletion mutant of each paralog, and of trigenic interactions for the double mutant, provides insight into their roles and a quantitative measure of their functional redundancy. Trigenic interaction analysis distinguishes two classes of paralogs: a more functionally divergent subset and another that retained more functional overlap. Gene feature analysis and modeling suggest that evolutionary trajectories of duplicated genes are dictated by combined functional and structural entanglement factors.


Subject(s)
Gene Duplication , Genes, Duplicate , Genome, Fungal , Protein Interaction Maps/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Gene Deletion , Gene Regulatory Networks , Genetic Techniques , Membrane Proteins/genetics , Peroxins/genetics
19.
Cell ; 181(4): 818-831.e19, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32359423

ABSTRACT

Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.


Subject(s)
DEAD-box RNA Helicases/metabolism , Gene Expression Regulation, Fungal/genetics , Protein Biosynthesis/genetics , Saccharomyces cerevisiae Proteins/metabolism , DEAD-box RNA Helicases/physiology , Gene Expression/genetics , Genes, Essential/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology
20.
Diabetes Obes Metab ; 22(12): 2241-2247, 2020 12.
Article in English | MEDLINE | ID: mdl-32250536

ABSTRACT

AIMS: To undertake a post-hoc analysis, utilizing a hypoglycaemia risk score based on DEVOTE trial data, to investigate if a high risk of severe hypoglycaemia was associated with an increased risk of cardiovascular events, and whether reduced rates of severe hypoglycaemia in patients identified as having the highest risk affected the risk of cardiovascular outcomes. MATERIALS AND METHODS: The DEVOTE population was divided into quartiles according to patients' individual hypoglycaemia risk scores. For each quartile, the observed incidence and rate of severe hypoglycaemia, major adverse cardiovascular event (MACE) and all-cause mortality were determined to investigate whether those with the highest risk of hypoglycaemia were also at the greatest risk of MACE and all-cause mortality. In addition, treatment differences within each risk quartile [insulin degludec (degludec) vs. insulin glargine 100 units/mL (glargine U100)] in terms of severe hypoglycaemia, MACE and all-cause mortality were investigated. RESULTS: Patients with the highest risk scores had the highest rates of severe hypoglycaemia, MACE and all-cause mortality. Treatment ratios between degludec and glargine U100 in the highest risk quartile were 95% confidence interval (CI) 0.56 (0.39; 0.80) (severe hypoglycaemia), 95% CI 0.76 (0.58; 0.99) (MACE) and 95% CI 0.77 (0.55; 1.07) (all-cause mortality). CONCLUSIONS: The risk score demonstrated that a high risk of severe hypoglycaemia was associated with a high incidence of MACE and all-cause mortality and that, in this high-risk group, those treated with degludec had a lower incidence of MACE. These observations support the hypothesis that hypoglycaemia is a risk factor for cardiovascular events.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Humans , Hypoglycemia/chemically induced , Hypoglycemia/epidemiology , Hypoglycemic Agents/adverse effects , Insulin Glargine/adverse effects , Insulin, Long-Acting/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...