Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(4)2022 03 26.
Article in English | MEDLINE | ID: mdl-35458417

ABSTRACT

Plague pandemics and outbreaks have killed millions of people during the history of humankind. The disease, caused by the bacteria Yersinia pestis, is currently treated effectively with antibiotics. However, in the case of multidrug-resistant (MDR) bacteria, alternative treatments are required. Bacteriophage (phage) therapy has shown efficient antibacterial activity in various experimental animal models and in human patients infected with different MDR pathogens. Here, we evaluated the efficiency of фA1122 and PST phage therapy, alone or in combination with second-line antibiotics, using a well-established mouse model of pneumonic plague. Phage treatment significantly delayed mortality and limited bacterial proliferation in the lungs. However, the treatment did not prevent bacteremia, suggesting that phage efficiency may decrease in the circulation. Indeed, in vitro phage proliferation assays indicated that blood exerts inhibitory effects on lytic activity, which may be the major cause of treatment inefficiency. Combining phage therapy and second-line ceftriaxone treatment, which are individually insufficient, provided protection that led to the survival of all infected animals-a synergistic protective effect that represents a proof of concept for efficient combinatorial therapy in an emergency event of a plague outbreak involving MDR Y. pestis strains.


Subject(s)
Bacteriophages , Phage Therapy , Plague , Yersinia pestis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Models, Animal , Humans , Mice , Plague/drug therapy
2.
Microorganisms ; 9(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208306

ABSTRACT

Pneumonic plague is a lethal infectious disease caused by Yersinia pestis, a Tier-1 biothreat agent. Antibiotic treatment can save infected patients; however, therapy should begin within 24 h of symptom onset. As some Y. pestis strains showed an antibiotic resistance phenotype, an antibiotic susceptibility test (AST) must be performed. Performing the Clinical and Laboratory Standards Institute (CLSI)-recommended standard process, which includes bacterial isolation, enumeration and microdilution testing, lasts several days. Thus, rapid AST must be developed. As previously published, the Y. pestis-specific reporter phage ϕA1122::luxAB can serve for rapid identification and AST (ID-AST). Herein, we demonstrate the ability to use ϕA1122::luxAB to determine minimal inhibitory concentration (MIC) values and antibiotic susceptibility categories for various Y. pestis therapeutic antibiotics. We confirmed the assay by testing several nonvirulent Y. pestis isolates with reduced susceptibility to doxycycline or ciprofloxacin. Moreover, the assay can be performed directly on positive human blood cultures. Furthermore, as Y. pestis may naturally or deliberately be spread in the environment, we demonstrate the compatibility of this direct method for this scenario. This direct phage-based ID-AST shortens the time needed for standard AST to less than a day, enabling rapid and correct treatment, which may also prevent the spread of the disease.

3.
Viruses ; 13(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440682

ABSTRACT

The global increase in multidrug-resistant (MDR) pathogenic bacteria has led to growing interest in bacteriophage ("phage") therapy. Therapeutic phages are usually selected based on their ability to infect and lyse target bacteria, using in vitro assays. In these assays, phage infection is determined using target bacteria grown in standard commercial rich media, while evaluation of the actual therapeutic activity requires the presence of human blood. In the present work, we characterized the ability of two different Yersinia pestis lytic phages (ϕA1122 and PST) to infect and kill a luminescent Y. pestis EV76 strain suspended in Brain Heart Infusion (BHI)-rich medium or in human whole blood, simulating the host environment. We found that the ability of the phages to infect and lyse blood-suspended Y. pestis was not correlated with their ability to infect and lyse BHI-suspended bacteria. While the two different phages exhibited efficient infective capacity in a BHI-suspended culture, only the PST phage showed efficient lysis ability against blood-suspended bacteria. Therefore, we recommend that for personalized phage therapy, selection of phage(s) for efficient treatment of patients suffering from MDR bacterial infections should include prior testing of the candidate phage(s) for their lysis ability in the presence of human blood.


Subject(s)
Bacteriolysis , Bacteriophages/physiology , Phage Therapy , Plague/virology , Yersinia pestis/virology , Humans , Plague/therapy , Precision Medicine , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...