Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 31(23): 235602, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30840947

ABSTRACT

A model resulting in charge ordering (CO) similar to that observed in cuprate superconductors is under study. It includes strong long-range electron-phonon interaction (EPI) and high density of correlated carriers. Coexistence of large bipolarons and delocalized carriers is a feature of such system. We develop generalized variation method to calculate the bipolaron size (CO period) in the ground normal state of such system at various doping. The approach allows the revealing of a possible physical reason of strongly different doping behavior of the CO wave vector in different cuprates. Obtained doping dependences of the CO period and temperature of the CO decay demonstrate quantitative agreement with those observed in cuprates. Predicted in the suggested approach ratio of the CO wave vector to the wave vector of the high-energy anomaly (HEA) in ARPES spectrum is in consent with that in cuprates. Calculated resonant x-rays scattering on the CO emerging in the model is in good agreement with experiments on cuprates including the asymmetry of the CO peaks' cross-section. A gap arises in the spectrum of delocalized carriers near antinodal direction due to their scattering on the periodic potential created by autolocalized carriers, analogously to photon crystal effect.

2.
J Phys Condens Matter ; 30(12): 125601, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29406313

ABSTRACT

An approach to considering systems with a high concentration of correlated carriers and strong long-range electron-phonon interaction and to calculating the high-energy part of the angle-resolved photoemission spectroscopy (ARPES) spectra of such systems is suggested. Joint relaxation of strongly coupled fields-a field of correlated electrons and phonon field-after photoemission is studied to clarify the nature of characteristic features observed in the high-energy part of the ARPES spectra of cuprate superconductors. Such relaxation occurs in systems with strong predominantly long-range electron-phonon interaction at sufficiently high carrier concentration due to the coexistence of autolocalized and delocalized carriers. A simple method to calculate analytically a high-energy part of the ARPES spectrum arising is proposed. It takes advantage of using the coherent states basis for the phonon field in the polaron and bipolaron states. The approach suggested yields all the high-energy spectral features like broad Gaussian band and regions of 'vertical dispersion' being in good quantitative agreement with the experiments on cuprates at any doping with both types of carriers. Demonstrated coexistence of autolocalized and delocalized carriers in superconducting cuprates changes the idea about their ground state above the superconducting transition temperature that is important for understanding transport and magnetic properties. High density of large-radius autolocalized carriers revealed may be a key to the explanation of charge ordering in doped cuprates.

SELECTION OF CITATIONS
SEARCH DETAIL
...