Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Environ Health ; 30(4): 337-71, 2015.
Article in English | MEDLINE | ID: mdl-26613329

ABSTRACT

Chronic diseases and illnesses associated with unspecific symptoms are on the rise. In addition to chronic stress in social and work environments, physical and chemical exposures at home, at work, and during leisure activities are causal or contributing environmental stressors that deserve attention by the general practitioner as well as by all other members of the health care community. It seems certainly necessary now to take "new exposures" like electromagnetic field (EMF) into account. Physicians are increasingly confronted with health problems from unidentified causes. Studies, empirical observations, and patient reports clearly indicate interactions between EMF exposure and health problems. Individual susceptibility and environmental factors are frequently neglected. New wireless technologies and applications have been introduced without any certainty about their health effects, raising new challenges for medicine and society. For instance, the issue of so-called non-thermal effects and potential long-term effects of low-dose exposure were scarcely investigated prior to the introduction of these technologies. Common EMF sources include Wi-Fi access points, routers and clients, cordless and mobile phones including their base stations, Bluetooth devices, ELF magnetic fields from net currents, ELF electric fields from electric lamps and wiring close to the bed and office desk. On the one hand, there is strong evidence that long-term-exposure to certain EMF exposures is a risk factor for diseases such as certain cancers, Alzheimer's disease and male infertility. On the other hand, the emerging electromagnetic hypersensitivity (EHS) is more and more recognized by health authorities, disability administrators and case workers, politicians, as well as courts of law. We recommend treating EHS clinically as part of the group of chronic multisystem illnesses (CMI) leading to a functional impairment (EHS), but still recognizing that the underlying cause remains the environment. In the beginning, EHS symptoms often occur only occasionally, but over time they may increase in frequency and severity. Common EHS symptoms include headaches, concentration difficulties, sleeping problems, depression, lack of energy, fatigue and flu-like symptoms. A comprehensive medical history, which should include all symptoms and their occurrences in spatial and temporal terms and in the context of EMF exposures, is the key to the diagnosis. The EMF exposure can be assessed by asking for typical sources like Wi-Fi access points, routers and clients, cordless and mobile phones and measurements at home and at work. It is very important to take the individual susceptibility into account. The primary method of treatment should mainly focus on the prevention or reduction of EMF exposure, that is, reducing or eliminating all sources of EMF at home and in the workplace. The reduction of EMF exposure should also be extended to public spaces such as schools, hospitals, public transport, and libraries to enable persons with EHS an unhindered use (accessibility measure). If a detrimental EMF exposure is reduced sufficiently, the body has a chance to recover and EHS symptoms will be reduced or even disappear. Many examples have shown that such measures can prove effective. Also the survival rate of children with leukemia depends on ELF magnetic field exposure at home. To increase the effectiveness of the treatment, the broad range of other environmental factors that contribute to the total body burden should also be addressed. Anything that supports a balanced homeostasis will increase a person's resilience against disease and thus against the adverse effects of EMF exposure. There is increasing evidence that EMF exposure has a major impact on the oxidative and nitrosative regulation capacity in affected individuals. This concept also may explain why the level of susceptibility to EMF can change and why the number of symptoms reported in the context of EMF exposures is so large. Based on our current understanding, a treatment approach that minimizes the adverse effects of peroxynitrite - as has been increasingly used in the treatment of multisystem disorders - works best. This EMF Guideline gives an overview of the current knowledge regarding EMF-related health risks and provides concepts for the diagnosis and treatment and accessibility measures of EHS to improve and restore individual health outcomes as well as for the development of strategies for prevention.

2.
J Transl Med ; 11: 117, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23651810

ABSTRACT

BACKGROUND: Vasoactive intestinal peptide (VIP) exerts immune-modulatory actions mainly via VPAC1 receptor stimulation. VPAC1 may be a treatment target of inflammatory diseases, but little is known about the receptor expression profile in immune-competent cells in vivo. MATERIAL AND METHODS: 20 male healthy subjects received a single intravenous bolus of 2 ng/kg body weight Escherichia coli endotoxin (LPS). Receptor status was evaluated in peripherial blood cells before and 3, 6 and 24 h after LPS by FACS analysis and q-PCR. VIP plasma concentrations were measured by ELISA. RESULTS: Granulocytes accounted for 51% of leukocytes at baseline and 58 ± 37% were positive for VPAC1. The granulocyte population increased 2.6 fold after LPS, and a transient down-regulation of VPAC1 to 28 ± 23% was noted at 3 h (p < 0.001), which returned to baseline at 24 hours. Baseline VPAC1 expression was low in lymphocytes (6.3 ± 3.2%) and monocytes (11 ± 9.6%). In these cells, LPS up-regulated VPAC1 at 6 h (13.2 ± 4.9%, p < 0.001) and 24 h (31.6 ± 20.5%, p = 0.001), respectively. Consistent changes were noted for the VIP-receptors VPAC2 and PAC1. VPAC1, VPAC2 and PAC1 mRNA levels were unchanged in peripheral blood mononuclear cells (PBMC). VIP plasma concentration increased from 0.5 ± 0.3 ng/ml to 0.7 ± 0.4 ng/ml at 6 h after LPS (p < 0.05) and returned to baseline within 24 h. CONCLUSION: The time profile of VPAC receptor expression differs in granulocytes, monocytes and lymphocytes after LPS challenge in humans. Changes in circulating VIP concentrations may reflect innate immune responses.


Subject(s)
Endotoxemia/metabolism , Leukocytes, Mononuclear/cytology , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Adolescent , Adult , Cell Separation , Escherichia coli/metabolism , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation , Granulocytes/cytology , Humans , Inflammation , Lymphocytes/cytology , Male , Middle Aged , Monocytes/cytology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...