Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 6(1): 209-220, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38125598

ABSTRACT

Mechanical cues in the tumor microenvironment interplay with internal cellular processes to control cancer cell migration. Microscale pores present in tumor tissue confer varying degrees of confinement on migrating cells, increasing matrix contact and inducing cytoskeletal rearrangement. Previously, we observed that increased collagen matrix contact significantly increased cell migration speed and cell-induced strains within the matrix. However, the effects of this confinement on future cell migration are not fully understood. Here, we use a collagen microtrack platform to determine the effect of confinement on priming MDA-MB-231 cancer cells for fast migration. We show that migration through a confined track results in increased speed and accumulation of migratory machinery, including actin and active mitochondria, in the front of migrating breast cancer cells. By designing microtracks that allow cells to first navigate a region of high confinement, then a region of low confinement, we assessed whether migration in high confinement changes future migratory behavior. Indeed, cells maintain their speed attained in high confinement even after exiting to a region of low confinement, indicating that cells maintain memory of previous matrix cues to fuel fast migration. Active mitochondria maintain their location at the front of the cell even after cells leave high confinement. Furthermore, knocking out vinculin to disrupt focal adhesions disrupts active mitochondrial localization and disrupts the fast migration seen upon release from confinement. Together, these data suggest that active mitochondrial localization in confinement may facilitate fast migration post-confinement. By better understanding how confinement contributes to future cancer cell migration, we can identify potential therapeutic targets to inhibit breast cancer metastasis.

2.
Elife ; 112022 12 07.
Article in English | MEDLINE | ID: mdl-36475545

ABSTRACT

Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear. Here, utilizing phenotypically sorted highly and weakly migratory human breast cancer cells, we demonstrate that weakly migratory metastatic cells disseminate from the primary tumor via communication with stromal cells. While highly migratory cells are capable of single cell migration, weakly migratory cells rely on cell-cell signaling with fibroblasts to escape the primary tumor. Weakly migratory cells release microvesicles rich in tissue transglutaminase 2 (Tg2) which activate murine fibroblasts and lead weakly migratory cancer cell migration in vitro. These microvesicles also induce tumor stiffening and fibroblast activation in vivo and enhance the metastasis of weakly migratory cells. Our results identify microvesicles and Tg2 as potential therapeutic targets for metastasis and reveal a novel aspect of the metastatic cascade in which weakly migratory cells release microvesicles which activate fibroblasts to enhance cancer cell dissemination.


Subject(s)
Breast Neoplasms , Cell-Derived Microparticles , Animals , Mice , Humans , Female , Protein Glutamine gamma Glutamyltransferase 2 , Breast Neoplasms/pathology , Fibroblasts/pathology , Cell Movement , Cell Line, Tumor , Neoplasm Metastasis/pathology
3.
iScience ; 25(10): 105190, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36274934

ABSTRACT

Intracellular and environmental cues result in heterogeneous cancer cell populations with different metabolic and migratory behaviors. Although glucose metabolism and epithelial-to-mesenchymal transition have previously been linked, we aim to understand how this relationship fuels cancer cell migration. We show that while glycolysis drives single-cell migration in confining microtracks, fast and slow cells display different migratory sensitivities to glycolysis and oxidative phosphorylation inhibition. Phenotypic sorting of highly and weakly migratory subpopulations (MDA+, MDA-) reveals that more mesenchymal, highly migratory MDA+ preferentially use glycolysis while more epithelial, weakly migratory MDA- utilize mitochondrial respiration. These phenotypes are plastic and MDA+ can be made less glycolytic, mesenchymal, and migratory and MDA- can be made more glycolytic, mesenchymal, and migratory via modulation of glucose metabolism or EMT. These findings reveal an intrinsic link between EMT and glucose metabolism that controls migration. Identifying mechanisms fueling phenotypic heterogeneity is essential to develop targeted metastatic therapeutics.

4.
Article in English | MEDLINE | ID: mdl-36118291

ABSTRACT

Chlorpyrifos (CPF) is an organophosphorus insecticide that has gained significant attention cue to the reported toxicity associated with developmental exposure. While the canonical mechanism of toxicity of CPF involves the inhibition of brain acetylcholinesterase (AChE), we have reported that exposure of juvenile rats to levels of CPF that do not yield any inhibition of brain AChE results in neurobehavioral alterations at later ages. However, it is unclear what effect exposure to these low levels of CPF has on blood esterase activities which are frequently used not only as biomarkers of exposure but also to set exposure levels in risk assessment. To determine this, male and female rat pups were exposed orally from postnatal day 10 to 16 to either corn oil (vehicle) or 0.5, 0.75, or 1.0 mg/kg CPF. At 12 h after the final exposure, serum cholinesterase (ChE), butyrylcholinesterase (BChE), and carboxylesterase (CES), and red blood cell (RBC) and brain AChE activities were determined. There were no differences between sexes in either the controls or individual treatments for all enzymes. Only the highest dosage of 1.0 mg/kg CPF yielded significant brain AChE inhibition (22-24%) but all dosages significantly inhibited the blood esterases with inhibition being highest with serum CES (65-85%) followed by serum BChE (57-76%), RBC AChE (35-65%), and then serum ChE (16-32%). Our data verify that blood esterases are inhibited at dosages of CPF that alter neurobehavioral performance in the absence of effects on brain AChE activity.

5.
Molecules ; 26(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203711

ABSTRACT

Inflammation and stiffness in the arteries is referred to as vascular calcification. This process is a prevalent yet poorly understood consequence of cardiovascular disease and diabetes mellitus, comorbidities with few treatments clinically available. Because this is an active process similar to bone formation, it is hypothesized that osteoclasts (OCs), bone-resorbing cells in the body, could potentially work to reverse existing calcification by resorbing bone material. The receptor activator of nuclear kappa B-ligand (RANKL) is a molecule responsible for triggering a response in monocytes and macrophages that allows them to differentiate into functional OCs. In this study, OC and RANKL delivery were employed to determine whether calcification could be attenuated. OCs were either delivered via direct injection, collagen/alginate microbeads, or collagen gel application, while RANKL was delivered via injection, through either a porcine subdermal model or aortic injury model. While in vitro results yielded a decrease in calcification using OC therapy, in vivo delivery mechanisms did not provide control or regulation to keep cells localized long enough to induce calcification reduction. However, these results do provide context and direction for the future of OC therapy, revealing necessary steps for this treatment to effectively reduce calcification in vivo. The discrepancy between in vivo and in vitro success for OC therapy points to the need for a more stable and time-controlled delivery mechanism that will allow OCs not only to remain at the site of calcification, but also to be regulated so that they are healthy and functioning normally when introduced to diseased tissue.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Osteoclasts/physiology , Vascular Calcification/therapy , Animals , Bone Resorption/metabolism , Carrier Proteins/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Elastin/metabolism , Elastin/physiology , Macrophages/metabolism , Male , Membrane Glycoproteins , Monocytes/metabolism , Myocytes, Smooth Muscle/metabolism , Osteoclasts/metabolism , Osteogenesis/drug effects , RANK Ligand/metabolism , RANK Ligand/pharmacology , Rats , Rats, Sprague-Dawley , Receptor Activator of Nuclear Factor-kappa B/metabolism , Swine , Vascular Calcification/metabolism
6.
Clin Exp Metastasis ; 38(4): 343-359, 2021 08.
Article in English | MEDLINE | ID: mdl-34076787

ABSTRACT

Metabolic reprogramming is a hallmark of cancer metastasis in which cancer cells manipulate their metabolic profile to meet the dynamic energetic requirements of the tumor microenvironment. Though cancer cell proliferation and migration through the extracellular matrix are key steps of cancer progression, they are not necessarily fueled by the same metabolites and energy production pathways. The two main metabolic pathways cancer cells use to derive energy from glucose, glycolysis and oxidative phosphorylation, are preferentially and plastically utilized by cancer cells depending on both their intrinsic metabolic properties and their surrounding environment. Mechanical factors in the microenvironment, such as collagen density, pore size, and alignment, and biochemical factors, such as oxygen and glucose availability, have been shown to influence both cell migration and glucose metabolism. As cancer cells have been identified as preferentially utilizing glycolysis or oxidative phosphorylation based on heterogeneous intrinsic or extrinsic factors, the relationship between cancer cell metabolism and metastatic potential is of recent interest. Here, we review current in vitro and in vivo findings in the context of cancer cell metabolism during migration and metastasis and extrapolate potential clinical applications of this work that could aid in diagnosing and tracking cancer progression in vivo by monitoring metabolism. We also review current progress in the development of a variety of metabolically targeted anti-metastatic drugs, both in clinical trials and approved for distribution, and highlight potential routes for incorporating our recent understanding of metabolic plasticity into therapeutic directions. By further understanding cancer cell energy production pathways and metabolic plasticity, more effective and successful clinical imaging and therapeutics can be developed to diagnose, target, and inhibit metastasis.


Subject(s)
Cell Movement , Neoplasm Metastasis , Neoplasms/pathology , Energy Metabolism , Humans , Oxidative Phosphorylation
7.
Cancer Res ; 81(13): 3649-3663, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33975882

ABSTRACT

Although intratumoral genomic heterogeneity can impede cancer research and treatment, less is known about the effects of phenotypic heterogeneities. To investigate the role of cell migration heterogeneities in metastasis, we phenotypically sorted metastatic breast cancer cells into two subpopulations based on migration ability. Although migration is typically considered to be associated with metastasis, when injected orthotopically in vivo, the weakly migratory subpopulation metastasized significantly more than the highly migratory subpopulation. To investigate the mechanism behind this observation, both subpopulations were assessed at each stage of the metastatic cascade, including dissemination from the primary tumor, survival in the circulation, extravasation, and colonization. Although both subpopulations performed each step successfully, weakly migratory cells presented as circulating tumor cell (CTC) clusters in the circulation, suggesting clustering as one potential mechanism behind the increased metastasis of weakly migratory cells. RNA sequencing revealed weakly migratory subpopulations to be more epithelial and highly migratory subpopulations to be more mesenchymal. Depletion of E-cadherin expression from weakly migratory cells abrogated metastasis. Conversely, induction of E-cadherin expression in highly migratory cells increased metastasis. Clinical patient data and blood samples showed that CTC clustering and E-cadherin expression are both associated with worsened patient outcome. This study demonstrates that deconvolving phenotypic heterogeneities can reveal fundamental insights into metastatic progression. More specifically, these results indicate that migratory ability does not necessarily correlate with metastatic potential and that E-cadherin promotes metastasis in phenotypically sorted breast cancer cell subpopulations by enabling CTC clustering. SIGNIFICANCE: This study employs phenotypic cell sorting for migration to reveal a weakly migratory, highly metastatic breast cancer cell subpopulation regulated by E-cadherin, highlighting the dichotomy between cancer cell migration and metastasis.


Subject(s)
Antigens, CD/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Neoplastic Cells, Circulating/pathology , Animals , Antigens, CD/genetics , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cadherins/genetics , Cell Proliferation , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Neoplastic Cells, Circulating/metabolism , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Fac Rev ; 10: 8, 2021.
Article in English | MEDLINE | ID: mdl-33659926

ABSTRACT

Migration is an energy-intensive, multi-step process involving cell adhesion, protrusion, and detachment. Each of these steps require cells to generate and consume energy, regulating their morphological changes and force generation. Given the need for energy to move, cellular metabolism has emerged as a critical regulator of both single cell and collective migration. Recently, metabolic heterogeneity has been highlighted as a potential determinant of collective cell behavior, as individual cells may play distinct roles in collective migration. Several tools and techniques have been developed and adapted to study cellular energetics during migration including live-cell probes to characterize energy utilization and metabolic state and methodologies to sort cells based on their metabolic profile. Here, we review the recent advances in techniques, parsing the metabolic heterogeneities inherent in cell populations and their contributions to cell migration.

9.
Biophys J ; 117(9): 1692-1701, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31623884

ABSTRACT

During metastasis, cancer cells navigate through a spatially heterogeneous extracellular matrix (ECM). Physical properties of ECM, including the degree of confinement, influence cell migration behavior. Here, utilizing in vitro three-dimensional collagen microtracks, we demonstrate that cell-ECM interactions, specifically the degree of spatial confinement, regulate migratory behavior. We found that cells migrate faster when they are fully confined, contacting all four walls (top, bottom, and two sides) of a collagen microtrack, compared with cells that are partially confined, contacting less than four walls. When fully confined, cells exhibit fewer but larger vinculin-containing adhesions and create greater strains in the surrounding matrix directed toward the cell body. In contrast, partially confined cells develop a more elongated morphology with smaller but significantly more vinculin-containing adhesions and displace the surrounding matrix less than fully confined cells. The resulting effect of increasing cell contractility via Rho activation is dependent on the number of walls with which the cell is in contact. Although matrix strains increase in both fully and partially confined cells, cells that are partially confined increase speed, whereas those in full confinement decrease speed. Together, these results suggest that the degree of cell-ECM contact during confined migration is a key determinant of speed, morphology, and cell-generated substrate strains during motility, and these factors may work in tandem to facilitate metastatic cell migration.


Subject(s)
Cell Movement , Extracellular Matrix/metabolism , Cell Line, Tumor , Cell Size , Cell-Matrix Junctions/metabolism , Enzyme Activation , Focal Adhesions/metabolism , Humans , Vinculin/metabolism , rho GTP-Binding Proteins/metabolism
10.
NPJ Precis Oncol ; 3: 20, 2019.
Article in English | MEDLINE | ID: mdl-31453371

ABSTRACT

While considerable progress has been made in studying genetic and cellular aspects of metastasis with in vitro cell culture and in vivo animal models, the driving mechanisms of each step of metastasis are still relatively unclear due to their complexity. Moreover, little progress has been made in understanding how cellular fitness in one step of the metastatic cascade correlates with ability to survive other subsequent steps. Engineered models incorporate tools such as tailored biomaterials and microfabrication to mimic human disease progression, which when coupled with advanced quantification methods permit comparisons to human patient samples and in vivo studies. Here, we review novel tools and techniques that have been recently developed to dissect key features of the metastatic cascade using primary patient samples and highly representative microenvironments for the purposes of advancing personalized medicine and precision oncology. Although improvements are needed to increase tractability and accessibility while faithfully simulating the in vivo microenvironment, these models are powerful experimental platforms for understanding cancer biology, furthering drug screening, and facilitating development of therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...