Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Neuroscience ; 554: 146-155, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876356

ABSTRACT

Highly prevalent in laboratory rodents, 'social' hetero-grooming behavior is translationally relevant to modeling a wide range of neuropsychiatric disorders. Here, we comprehensively evaluated all known to date mouse genes linked to aberrant hetero-grooming phenotype, and applied bioinformatics tools to construct a network of their established protein-protein interactions (PPI). We next identified several distinct molecular clusters within this complex network, including neuronal differentiation, cytoskeletal, WNT-signaling and synapsins-associated pathways. Using additional bioinformatics analyses, we further identified 'central' (hub) proteins within these molecular clusters, likely key for mouse hetero-grooming behavior. Overall, a more comprehensive characterization of intricate molecular pathways linked to aberrant rodent grooming may markedly advance our understanding of underlying cellular mechanisms and related neurological disorders, eventually helping discover novel targets for their pharmacological or gene therapy interventions.

2.
Article in English | MEDLINE | ID: mdl-37580009

ABSTRACT

Rodent self-grooming is an important complex behavior, and its deficits are translationally relevant to a wide range of neuropsychiatric disorders. Here, we analyzed a comprehensive dataset of 227 genes whose mutations are known to evoke aberrant self-grooming in mice. Using these genes, we constructed the network of their established protein-protein interactions (PPI), yielding several distinct molecular clusters related to postsynaptic density, the Wnt signaling, transcription factors, neuronal cell cycle, NOS neurotransmission, microtubule regulation, neuronal differentiation/trafficking, neurodevelopment and mitochondrial function. Utilizing further bioinformatics analyses, we also identified novel central ('hub') proteins within these clusters, whose genes may also be implicated in aberrant self-grooming and other repetitive behaviors in general. Untangling complex molecular pathways of this important behavior using in silico approaches contributes to our understanding of related neurological disorders, and may suggest novel potential targets for their pharmacological or gene therapy.


Subject(s)
Neurons , Mice , Animals , Grooming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...