Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 626(7999): 535-541, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297126

ABSTRACT

The brightness of an emitter is ultimately described by Fermi's golden rule, with a radiative rate proportional to its oscillator strength times the local density of photonic states. As the oscillator strength is an intrinsic material property, the quest for ever brighter emission has relied on the local density of photonic states engineering, using dielectric or plasmonic resonators1,2. By contrast, a much less explored avenue is to boost the oscillator strength, and hence the emission rate, using a collective behaviour termed superradiance. Recently, it was proposed3 that the latter can be realized using the giant oscillator-strength transitions of a weakly confined exciton in a quantum well when its coherent motion extends over many unit cells. Here we demonstrate single-photon superradiance in perovskite quantum dots with a sub-100 picosecond radiative decay time, almost as short as the reported exciton coherence time4. The characteristic dependence of radiative rates on the size, composition and temperature of the quantum dot suggests the formation of giant transition dipoles, as confirmed by effective-mass calculations. The results aid in the development of ultrabright, coherent quantum light sources and attest that quantum effects, for example, single-photon emission, persist in nanoparticles ten times larger than the exciton Bohr radius.

3.
Nat Commun ; 14(1): 229, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36646706

ABSTRACT

Lead halide perovskites open great prospects for optoelectronics and a wealth of potential applications in quantum optical and spin-based technologies. Precise knowledge of the fundamental optical and spin properties of charge-carrier complexes at the origin of their luminescence is crucial in view of the development of these applications. On nearly bulk Cesium-Lead-Bromide single perovskite nanocrystals, which are the test bench materials for next-generation devices as well as theoretical modeling, we perform low temperature magneto-optical spectroscopy to reveal their entire band-edge exciton fine structure and charge-complex binding energies. We demonstrate that the ground exciton state is dark and lays several millielectronvolts below the lowest bright exciton sublevels, which settles the debate on the bright-dark exciton level ordering in these materials. More importantly, combining these results with spectroscopic measurements on various perovskite nanocrystal compounds, we show evidence for universal scaling laws relating the exciton fine structure splitting, the trion and biexciton binding energies to the band-edge exciton energy in lead-halide perovskite nanostructures, regardless of their chemical composition. These scaling laws solely based on quantum confinement effects and dimensionless energies offer a general predictive picture for the interaction energies within charge-carrier complexes photo-generated in these emerging semiconductor nanostructures.

4.
Adv Mater ; 35(9): e2208354, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36537857

ABSTRACT

All-inorganic lead-halide perovskite (LHP) (CsPbX3 , X = Cl, Br, I) quantum dots (QDs) have emerged as a competitive platform for classical light-emitting devices (in the weak light-matter interaction regime, e.g., LEDs and laser), as well as for devices exploiting strong light-matter interaction at room temperature. Many-body interactions and quantum correlations among photogenerated exciton complexes play an essential role, for example, by determining the laser threshold, the overall brightness of LEDs, and the single-photon purity in quantum light sources. Here, by combining cryogenic single-QD photoluminescence spectroscopy with configuration-interaction (CI) calculations, the size-dependent trion and biexciton binding energies are addressed. Trion binding energies increase from 7 to 17 meV for QD sizes decreasing from 30 to 9 nm, while the biexciton binding energies increase from 15 to 30 meV, respectively. CI calculations quantitatively corroborate the experimental results and suggest that the effective dielectric constant for biexcitons slightly deviates from the one of the single excitons, potentially as a result of coupling to the lattice in the multiexciton regime. The findings here provide a deep insight into the multiexciton properties in all-inorganic LHP QDs, essential for classical and quantum optoelectronic devices.

5.
Nano Lett ; 22(9): 3751-3760, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35467890

ABSTRACT

Attaining pure single-photon emission is key for many quantum technologies, from optical quantum computing to quantum key distribution and quantum imaging. The past 20 years have seen the development of several solid-state quantum emitters, but most of them require highly sophisticated techniques (e.g., ultrahigh vacuum growth methods and cryostats for low-temperature operation). The system complexity may be significantly reduced by employing quantum emitters capable of working at room temperature. Here, we present a systematic study across ∼170 photostable single CsPbX3 (X: Br and I) colloidal quantum dots (QDs) of different sizes and compositions, unveiling that increasing quantum confinement is an effective strategy for maximizing single-photon purity due to the suppressed biexciton quantum yield. Leveraging the latter, we achieve 98% single-photon purity (g(2)(0) as low as 2%) from a cavity-free, nonresonantly excited single 6.6 nm CsPbI3 QDs, showcasing the great potential of CsPbX3 QDs as room-temperature highly pure single-photon sources for quantum technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...