Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neonatal Perinatal Med ; 13(4): 469-476, 2020.
Article in English | MEDLINE | ID: mdl-32444566

ABSTRACT

BACKGROUND: Hypothermia with xenon gas has been used to reduce brain injury and disability rate after perinatal hypoxia-ischemia. We evaluated xenon gas therapy effects in an in vitro model with or without hypothermia on cultured human airway epithelial cells (Calu-3). METHODS: Calu-3 monolayers were grown at an air-liquid interface and exposed to one of the following conditions: 1) 21% FiO2 at 37°C (control); 2) 45% FiO2 and 50% xenon at 37°C; 3) 21% FiO2 and 50% xenon at 32°C; 4) 45% FiO2 and 50% xenon at 32°C for 24 hours. Transepithelial resistance (TER) measurements were performed and apical surface fluids were collected and assayed for total protein, IL-6, and IL-8. Three monolayers were used for immunofluorescence localization of zonula occludens-1 (ZO-1). The data were analyzed by one-way ANOVA. RESULTS: TER decreased at 24 hours in all treatment groups. Xenon with hyperoxia and hypothermia resulted in greatest decrease in TER compared with other groups. Immunofluorescence localization of ZO-1 (XY) showed reduced density of ZO-1 rings and incomplete ring-like staining in the 45% FiO2- 50% xenon group at 32°C compared with other groups. Secretion of total protein was not different among groups. Secretion of IL-6 in 21% FiO2 with xenon group at 32°C was less than that of the control group. The secretion of IL-8 in 45% FiO2 with xenon at 32°C was greater than that of other groups. CONCLUSION: Hyperoxia and hypothermia result in detrimental epithelial cell function and inflammation over 24-hour exposure. Xenon gas did not affect cell function or reduce inflammation.


Subject(s)
Hyperoxia/immunology , Hypothermia/immunology , Hypoxia-Ischemia, Brain , Interleukin-6/immunology , Interleukin-8/immunology , Xenon/pharmacology , Anesthetics, Inhalation/pharmacology , Cells, Cultured , Humans , Hypoxia-Ischemia, Brain/immunology , Hypoxia-Ischemia, Brain/therapy , Inflammation , Inflammation Mediators/immunology , Respiratory Mucosa/drug effects , Respiratory Mucosa/physiology , Tight Junctions/physiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...