Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36770023

ABSTRACT

In the present work, the tribological experiments on sliding the electron beam composite M2+WC coating have been carried out with characterization of the sample microstructures and phases both before and after the testing using metallography, SEM, EDS, and XRD. The sliding in the speed range 0.8-3.6 m/s resulted in simultaneous reduction in both wear rate and coefficient of friction with the sliding speed. Investigations showed that such a tribological adaptation was due to the tribochemical generation of lubricative FeWO4 and Fe2WO6 mixed oxides and the generation of a mechanically mixed composite layer on the worn surfaces that consisted of carbide fragments, an oxidized metal matrix, and was lubricated by in-situ formed mixed iron-tungsten oxides.

2.
Materials (Basel) ; 16(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36676554

ABSTRACT

In the presented work, the effect of friction stir processing admixing the zirconium tungstate ZrW2O8 powder on the microstructure, mechanical and tribological properties of the AA5056 Al-Mg alloy stir zone has been studied. The FSP resulted in obtaining dense composite stir zones where α-ZrW2O8 underwent the following changes: (i) high-temperature transformation into metastable ß'-ZrW2O8 and (ii) decomposition into WO3 and ZrO2 oxides followed by the formation of intermetallic compounds WAl12 and ZrAl3. These precipitates served as reinforcing phases to improve mechanical and tribological characteristics of the obtained fine-grained composites. The reduced values of wear rate and friction coefficient are due to the combined action the Hall-Petch mechanism and reinforcement by the decomposition products, including Al2O3, ZrO2, ß'-ZrW2O8 and intermetallic compounds such as WAl12 and ZrAl3. Potential applications of the above-discussed composites maybe related to their improved tribological characteristics, for example in aerospace and vehicle-building industries.

3.
Materials (Basel) ; 15(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591543

ABSTRACT

Electron beam additive wire-feed manufacturing of Cu-3wt.%S-0.8wt.%Mn bronze thin wall on a stainless steel substrate has been carried out at heat input levels of 0.19, 0.25, and 0.31 kJ/mm. The microstructures of as-deposited metal ranged from low aspect ratio columnar with equiaxed grain layers to zig-zagged and high aspect ratio columnar, as depended on the heat input. Post-deposition annealing at 900 °C for 6 h resulted in recrystallization of the high aspect ratio columnar grains with further grain growth by boundary migration. Pre-deformation by 10% thickness reduction and then annealing at 900 °C for 6 h also allowed obtaining recrystallized grain structures with less fraction of twin boundaries but higher fraction of high-angle ones, as compared to those of only annealed sample. Pre-deformation and ensuing annealing allowed simultaneous increasing of the ultimate tensile strength and strain-to-fracture.

4.
Materials (Basel) ; 15(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35160761

ABSTRACT

The paper investigated the possibility of obtaining large-sized blocks of C11000 copper on stainless steel substrates via electron beam wire-feed additive technology. The features of the microstructure and grain texture formation and their influence on the mechanical properties and anisotropy were revealed. A strategy of printing large-sized C11000 copper was determined, which consists of perimeter formation followed by the filling of the internal layer volume. This allows us to avoid the formation of defects in the form of drops, underflows and macrogeometry disturbances. It was found that the deposition of the first layers of C11000 copper on a steel substrate results in rapid heat dissipation and the diffusion of steel components (Fe, Cr and Ni) into the C11000 layers, which promotes the formation of equiaxed grains of size 8.94 ± 0.04 µm. As the blocks grow, directional grain growth occurs close to the <101> orientation, whose size reaches 1086.45 ± 57.13 µm. It is shown that the additive growing of large-sized C11000 copper leads to the anisotropy of mechanical properties due to non-uniform grain structure. The tensile strength in the opposite growing direction near the substrate is 394 ± 10 MPa and decreases to 249 ± 10 MPa as the C11000 blocks grows. In the growing direction, the tensile strength is 145 ± 10 MPa.

5.
Materials (Basel) ; 16(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36614462

ABSTRACT

In this work, the method of electron beam additive manufacturing (EBAM) was used to fabricate a Cu-based alloy possessing a shape memory effect. Electron beam additive technology is especially relevant for copper and its alloys since the process is carried out in a vacuum, which makes it possible to circumvent oxidation. The main purpose of the study was to establish the influence of the printing parameters on the structure of the obtained products, their phase composition, mechanical properties, dry friction behavior, and the structure-phase gradient that formed in Cu-Al-Mn alloy samples during electron beam layer-by-layer printing. The results of the study allowed us to reveal that the structure-phase composition, the mechanical properties, and the tribological performance of the fabricated material are mainly affected by the magnitude of heat input during electron beam additive printing of Cu-Al-Mn alloy. High heat input values led to the formation of the ß1' + α decomposed structure. Low heat input values enabled the suppression of decomposition and the formation of an ordered 1 structure. The microhardness values were distributed on a gradient from 2.0 to 2.75 GPa. Fabricated samples demonstrated different behaviors in friction and wear depending on their composition and structure, with the value of the friction coefficient lying in the range between 0.1 and 0.175.

6.
Materials (Basel) ; 14(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34832351

ABSTRACT

Electron beam additive wire-feed deposition of Cu-7.5wt.%Al bronze on a stainless-steel substrate has been carried out at heat input levels 0.21, 0.255, and 0.3 kJ/mm. The microstructures formed at 0.21 kJ/mm were characterized by the presence of both zigzagged columnar and small equiaxed grains with 10% of Σ3 annealing twin grain boundaries. No equiaxed grains were found in samples obtained at 0.255 and 0.3 kJ/mm. The zigzagged columnar ones were only retained in samples obtained at 0.255 kJ/mm. The fraction of Σ3 boundaries reduced at higher heat input values to 7 and 4%, respectively. The maximum tensile strength was achieved on samples obtained with 0.21 kJ/mm as tested with a tensile axis perpendicular to the deposited wall's height. More than 100% elongation-to-fracture was achieved when testing the samples obtained at 0.3 kJ/mm (as tested with a tensile axis coinciding with the wall's height).

SELECTION OF CITATIONS
SEARCH DETAIL
...