Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 8: 2118, 2017.
Article in English | MEDLINE | ID: mdl-29163410

ABSTRACT

Listeria monocytogenes is a food-borne pathogen that can persist in food processing plants by forming biofilms on abiotic surfaces. The benefits that bacteria can gain from living in a biofilm, i.e., protection from environmental factors and tolerance to biocides, have been linked to the biofilm structure. Different L. monocytogenes strains build biofilms with diverse structures, and the underlying mechanisms for that diversity are not yet fully known. This work combines quantitative image analysis, cell counts, nutrient uptake data and mathematical modeling to provide a mechanistic insight into the dynamics of the structure of biofilms formed by L. monocytogenes L1A1 (serotype 1/2a) strain. Confocal laser scanning microscopy (CLSM) and quantitative image analysis were used to characterize the structure of L1A1 biofilms throughout time. L1A1 forms flat, thick structures; damaged or dead cells start appearing early in deep layers of the biofilm and rapidly and massively loss biomass after 4 days. We proposed several reaction-diffusion models to explain the system dynamics. Model candidates describe biomass and nutrients evolution including mechanisms of growth and cell spreading, nutrients diffusion and uptake and biofilm decay. Data fitting was used to estimate unknown model parameters and to choose the most appropriate candidate model. Remarkably, standard reaction-diffusion models could not describe the biofilm dynamics. The selected model reveals that biofilm aging and glucose impaired uptake play a critical role in L1A1 L. monocytogenes biofilm life cycle.

2.
Int J Food Microbiol ; 206: 84-95, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26001376

ABSTRACT

In order to find out how real Listeria monocytogenes-carrying biofilms are in industrial settings, a total of 270 environmental samples belonging to work surfaces from fish (n = 123), meat (n = 75) and dairy industries (n = 72) were analysed in order to detect L. monocytogenes. 12 samples were positive for L. monocytogenes and a total of 18 different species were identified as accompanying microbiota in fish and meat industry. No L. monocytogenes was found in samples from dairy industry. Molecular characterisation combining results of AscI and ApaI macrorestriction PFGE assays yielded 7 different subtypes of L. monocytogenes sharing in 71.43% of cases the same serogroup (1/2a-3a). Results from dynamic numerical characterisation between L. monocytogenes monospecies biofilms on stainless steel (SS) using MATLAB-based tool BIOFILMDIVER demonstrated that except in isolate A1, in which a significant increase in the percentage of covered area (CA), average diffusion distance (ADD) and maximum diffusion distance (MDD) was observed after 120 h of culture, no significant differences were observed in the dynamics of the rest of the L. monocytogenes isolates. Quantitative dual-species biofilm association experiments performed on SS indicated that L. monocytogenes cell counts presented lower values in mixed-species cultures with certain species at 24 and 48 h compared with mono-species culture. However, they remained unaltered after 72 h except when co-cultured with Serratia fonticola which presented differences in all sampling times and was also the dominant species within the dual-species biofilm. When considering frequency of appearance of accompanying species, an ecological distribution was demonstrated as Escherichia coli appeared to be the most abundant in fish industry and Carnobacterium spp. in meat industry.


Subject(s)
Biofilms , Food Industry , Food Microbiology , Listeria monocytogenes/physiology , Stainless Steel , Listeria monocytogenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...