Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nat Protoc ; 16(1): 458-471, 2021 01.
Article in English | MEDLINE | ID: mdl-33277629

ABSTRACT

Short-read metagenomic sequencing and de novo genome assembly of the human gut microbiome can yield draft bacterial genomes without isolation and culture. However, bacterial genomes assembled from short-read sequencing are often fragmented. Furthermore, these metagenome-assembled genomes often exclude repeated genomic elements, such as mobile genetic elements, compromising our understanding of the contribution of these elements to important bacterial phenotypes. Although long-read sequencing has been applied successfully to the assembly of contiguous bacterial isolate genomes, extraction of DNA of sufficient molecular weight, purity and quantity for metagenomic sequencing from stool samples can be challenging. Here, we present a protocol for the extraction of microgram quantities of high-molecular-weight DNA from human stool samples that are suitable for downstream long-read sequencing applications. We also present Lathe ( www.github.com/bhattlab/lathe ), a computational workflow for long-read basecalling, assembly, consensus refinement with long reads or Illumina short reads and genome circularization. Altogether, this protocol can yield high-quality contiguous or circular bacterial genomes from a complex human gut sample in approximately 10 d, with 2 d of hands-on bench and computational effort.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Nanopore Sequencing/methods , Sequence Analysis, DNA/methods , DNA/genetics , DNA/isolation & purification , Feces/microbiology , Humans , Metagenome
2.
Genome Med ; 12(1): 50, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32471482

ABSTRACT

BACKGROUND: Populations of closely related microbial strains can be simultaneously present in bacterial communities such as the human gut microbiome. We recently developed a de novo genome assembly approach that uses read cloud sequencing to provide more complete microbial genome drafts, enabling precise differentiation and tracking of strain-level dynamics across metagenomic samples. In this case study, we present a proof-of-concept using read cloud sequencing to describe bacterial strain diversity in the gut microbiome of one hematopoietic cell transplantation patient over a 2-month time course and highlight temporal strain variation of gut microbes during therapy. The treatment was accompanied by diet changes and administration of multiple immunosuppressants and antimicrobials. METHODS: We conducted short-read and read cloud metagenomic sequencing of DNA extracted from four longitudinal stool samples collected during the course of treatment of one hematopoietic cell transplantation (HCT) patient. After applying read cloud metagenomic assembly to discover strain-level sequence variants in these complex microbiome samples, we performed metatranscriptomic analysis to investigate differential expression of antibiotic resistance genes. Finally, we validated predictions from the genomic and metatranscriptomic findings through in vitro antibiotic susceptibility testing and whole genome sequencing of isolates derived from the patient stool samples. RESULTS: During the 56-day longitudinal time course that was studied, the patient's microbiome was profoundly disrupted and eventually dominated by Bacteroides caccae. Comparative analysis of B. caccae genomes obtained using read cloud sequencing together with metagenomic RNA sequencing allowed us to identify differences in substrain populations over time. Based on this, we predicted that particular mobile element integrations likely resulted in increased antibiotic resistance, which we further supported using in vitro antibiotic susceptibility testing. CONCLUSIONS: We find read cloud assembly to be useful in identifying key structural genomic strain variants within a metagenomic sample. These strains have fluctuating relative abundance over relatively short time periods in human microbiomes. We also find specific structural genomic variations that are associated with increased antibiotic resistance over the course of clinical treatment.


Subject(s)
Bacteria/genetics , Gastrointestinal Microbiome/genetics , Anti-Infective Agents/pharmacology , Azacitidine/pharmacology , Azithromycin/pharmacology , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Ciprofloxacin/pharmacology , DNA, Bacterial , Diet , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Genome, Bacterial , Hematopoietic Stem Cell Transplantation , Humans , Immunosuppressive Agents/pharmacology , Male , Metagenome , Middle Aged , Myelodysplastic Syndromes/microbiology , Myelodysplastic Syndromes/therapy , Primary Myelofibrosis/microbiology , Primary Myelofibrosis/therapy , RNA-Seq , Sequence Analysis, DNA
3.
Nat Biotechnol ; 38(6): 701-707, 2020 06.
Article in English | MEDLINE | ID: mdl-32042169

ABSTRACT

Microbial genomes can be assembled from short-read sequencing data, but the assembly contiguity of these metagenome-assembled genomes is constrained by repeat elements. Correct assignment of genomic positions of repeats is crucial for understanding the effect of genome structure on genome function. We applied nanopore sequencing and our workflow, named Lathe, which incorporates long-read assembly and short-read error correction, to assemble closed bacterial genomes from complex microbiomes. We validated our approach with a synthetic mixture of 12 bacterial species. Seven genomes were completely assembled into single contigs and three genomes were assembled into four or fewer contigs. Next, we used our methods to analyze metagenomics data from 13 human stool samples. We assembled 20 circular genomes, including genomes of Prevotella copri and a candidate Cibiobacter sp. Despite the decreased nucleotide accuracy compared with alternative sequencing and assembly approaches, our methods improved assembly contiguity, allowing for investigation of the role of repeat elements in microbial function and adaptation.


Subject(s)
Gastrointestinal Microbiome/genetics , Genome, Bacterial/genetics , Metagenomics/methods , Nanopore Sequencing/methods , Sequence Analysis, DNA/methods , Adult , Animals , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Dogs , Feces/microbiology , Humans , Mice
4.
BMC Bioinformatics ; 20(Suppl 16): 585, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31787070

ABSTRACT

BACKGROUND: Low diversity of the gut microbiome, often progressing to the point of intestinal domination by a single species, has been linked to poor outcomes in patients undergoing hematopoietic cell transplantation (HCT). Our ability to understand how certain organisms attain intestinal domination over others has been restricted in part by current metagenomic sequencing technologies that are typically unable to reconstruct complete genomes for individual organisms present within a sequenced microbial community. We recently developed a metagenomic read cloud sequencing and assembly approach that generates improved draft genomes for individual organisms compared to conventional short-read sequencing and assembly methods. Herein, we applied metagenomic read cloud sequencing to four stool samples collected longitudinally from an HCT patient preceding treatment and over the course of heavy antibiotic exposure. RESULTS: Characterization of microbiome composition by taxonomic classification of reads reveals that that upon antibiotic exposure, the subject's gut microbiome experienced a marked decrease in diversity and became dominated by Escherichia coli. While diversity is restored at the final time point, this occurs without recovery of the original species and strain-level composition. Draft genomes for individual organisms within each sample were generated using both read cloud and conventional assembly. Read clouds were found to improve the completeness and contiguity of genome assemblies compared to conventional assembly. Moreover, read clouds enabled the placement of antibiotic resistance genes present in multiple copies both within a single draft genome and across multiple organisms. The occurrence of resistance genes associates with the timing of antibiotics administered to the patient, and comparative genomic analysis of the various intestinal E. coli strains across time points as well as the bloodstream isolate showed that the subject's E. coli bloodstream infection likely originated from the intestine. The E. coli genome from the initial pre-transplant stool sample harbors 46 known antimicrobial resistance genes, while all other species from the pre-transplant sample each contain at most 5 genes, consistent with a model of heavy antibiotic exposure resulting in selective outgrowth of the highly antibiotic-resistant E. coli. CONCLUSION: This study demonstrates the application and utility of metagenomic read cloud sequencing and assembly to study the underlying strain-level genomic factors influencing gut microbiome dynamics under extreme selective pressures in the clinical context of HCT.


Subject(s)
Gastrointestinal Microbiome , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Selection, Genetic , Base Sequence , Biodiversity , Drug Resistance, Microbial/genetics , Escherichia coli/genetics , Gastrointestinal Microbiome/genetics , Genes, Bacterial , Humans , Metagenome/genetics , Microbiota/genetics , Principal Component Analysis , Synteny/genetics
5.
Nat Biotechnol ; 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30320765

ABSTRACT

Although shotgun metagenomic sequencing of microbiome samples enables partial reconstruction of strain-level community structure, obtaining high-quality microbial genome drafts without isolation and culture remains difficult. Here, we present an application of read clouds, short-read sequences tagged with long-range information, to microbiome samples. We present Athena, a de novo assembler that uses read clouds to improve metagenomic assemblies. We applied this approach to sequence stool samples from two healthy individuals and compared it with existing short-read and synthetic long-read metagenomic sequencing techniques. Read-cloud metagenomic sequencing and Athena assembly produced the most comprehensive individual genome drafts with high contiguity (>200-kb N50, fewer than ten contigs), even for bacteria with relatively low (20×) raw short-read-sequence coverage. We also sequenced a complex marine-sediment sample and generated 24 intermediate-quality genome drafts (>70% complete, <10% contaminated), nine of which were complete (>90% complete, <5% contaminated). Our approach allows for culture-free generation of high-quality microbial genome drafts by using a single shotgun experiment.

6.
Cell ; 173(7): 1742-1754.e17, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29906449

ABSTRACT

Osmotic diarrhea is a prevalent condition in humans caused by food intolerance, malabsorption, and widespread laxative use. Here, we assess the resilience of the gut ecosystem to osmotic perturbation at multiple length and timescales using mice as model hosts. Osmotic stress caused reproducible extinction of highly abundant taxa and expansion of less prevalent members in human and mouse microbiotas. Quantitative imaging revealed decimation of the mucus barrier during osmotic perturbation, followed by recovery. The immune system exhibited temporary changes in cytokine levels and a lasting IgG response against commensal bacteria. Increased osmolality prevented growth of commensal strains in vitro, revealing one mechanism contributing to extinction. Environmental availability of microbiota members mitigated extinction events, demonstrating how species reintroduction can affect community resilience. Our findings (1) demonstrate that even mild osmotic diarrhea can cause lasting changes to the microbiota and host and (2) lay the foundation for interventions that increase system-wide resilience.


Subject(s)
Diarrhea/pathology , Gastrointestinal Microbiome/drug effects , Polyethylene Glycols/pharmacology , Animals , Bacteroidetes/drug effects , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cecum/chemistry , Cecum/metabolism , Cecum/microbiology , Cecum/pathology , Colon/chemistry , Colon/microbiology , Colon/pathology , Cytokines/metabolism , Diarrhea/immunology , Diarrhea/microbiology , Diarrhea/veterinary , Feces/microbiology , Glycoside Hydrolases/metabolism , Humans , Immunity, Humoral/drug effects , Immunoglobulin G/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Metagenomics , Mice , Osmolar Concentration , Polyethylene Glycols/metabolism , Proteome/analysis , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , Verrucomicrobia/drug effects , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
7.
Article in English | MEDLINE | ID: mdl-33833903

ABSTRACT

Low intestinal microbial diversity, often leading to domination of the intestine by a single organism, is associated with poor outcomes following hematopoietic cell transplantation (HCT). Understanding how certain organisms achieve domination in the intestine is limited by current metagenomic sequencing technologies, which are typically unable to reconstruct complete genome drafts without bacterial isolation and culture. Recently, we developed a metagenomic read cloud sequencing approach that provides significantly improved genome drafts for individual organisms compared to conventional short-read sequencing methods. Here, we apply read cloud sequencing to four longitudinal stool samples collected from an HCT patient before and after heavy antibiotic exposure. During this time period, the patient experienced Escherichia coli gut domination and an E. coli bloodstream infection. We find that read clouds enable the placement of multiple copies of antibiotic resistance genes both within and across genomes, and the presence of resistance genes correlates with the timing of antibiotics administered to the patient. Comparative genomic analysis reveals that the E. coli bloodstream infection likely originated from the gut. The pre-transplant E. coli genome harbors 46 known resistance genes, whereas all other organisms from the pre-transplant time point contain 5 or fewer resistance genes, supporting a model in which the E. coli outgrowth was a result of selection by heavy antibiotic exposure. This case study highlights the application of metagenomic read cloud sequencing in a clinical context to elucidate the genomic underpinnings of microbiome dynamics under extreme selective pressures.

8.
PLoS One ; 12(8): e0182585, 2017.
Article in English | MEDLINE | ID: mdl-28827811

ABSTRACT

Immunocompromised individuals are at high risk of developing Clostridium difficile-associated disease (CDAD). Fecal microbiota transplantation (FMT) is a highly effective therapy for refractory or recurrent CDAD and, despite safety concerns, has recently been offered to immunocompromised patients. We investigated the genomics of bacterial composition following FMT in immunocompromised patients over a 1-year period. Metagenomic, strain and gene-level bacterial dynamics were characterized in two CDAD-affected hematopoietic stem cell (HCT) recipients following FMT. We found alterations in gene content, including loss of virulence and antibiotic resistance genes. These alterations were accompanied by long-term bacterial divergence at the species and strain levels. Our findings suggest limited durability of the specific bacterial consortium introduced with FMT and indicate that alterations of the functional potential of the microbiome are more complex than can be inferred by taxonomic information alone. Our observation that FMT alone cannot induce long-term donor-like alterations of the microbiota of HCT recipients suggests that FMT cannot indefinitely supersede environmental and/or host factors in shaping bacterial composition.


Subject(s)
Enterocolitis, Pseudomembranous/therapy , Fecal Microbiota Transplantation , Immunocompromised Host , Adult , Aged , Bacteria/classification , Female , Hematopoietic Stem Cell Transplantation , Humans , Male , Middle Aged , Treatment Outcome
9.
Nature ; 538(7625): 344-349, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27602946

ABSTRACT

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Azetidines/therapeutic use , Drug Discovery , Life Cycle Stages/drug effects , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Animals , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/chemical synthesis , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Azetidines/administration & dosage , Azetidines/adverse effects , Azetidines/pharmacology , Cytosol/enzymology , Disease Models, Animal , Female , Liver/drug effects , Liver/parasitology , Macaca mulatta/parasitology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Male , Mice , Phenylalanine-tRNA Ligase/antagonists & inhibitors , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Plasmodium falciparum/cytology , Plasmodium falciparum/enzymology , Safety
10.
Sci Transl Med ; 8(339): 339ra71, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27194729

ABSTRACT

Intestinal bacteria may modulate the risk of infection and graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients often develop neutropenic fever, which is treated with antibiotics that may target anaerobic bacteria in the gut. We retrospectively examined 857 allo-HSCT recipients and found that treatment of neutropenic fever with imipenem-cilastatin and piperacillin-tazobactam antibiotics was associated with increased GVHD-related mortality at 5 years (21.5% for imipenem-cilastatin-treated patients versus 13.1% for untreated patients, P = 0.025; 19.8% for piperacillin-tazobactam-treated patients versus 11.9% for untreated patients, P = 0.007). However, two other antibiotics also used to treat neutropenic fever, aztreonam and cefepime, were not associated with GVHD-related mortality (P = 0.78 and P = 0.98, respectively). Analysis of stool specimens from allo-HSCT recipients showed that piperacillin-tazobactam administration was associated with perturbation of gut microbial composition. Studies in mice demonstrated aggravated GVHD mortality with imipenem-cilastatin or piperacillin-tazobactam compared to aztreonam (P < 0.01 and P < 0.05, respectively). We found pathological evidence for increased GVHD in the colon of imipenem-cilastatin-treated mice (P < 0.05), but no difference in the concentration of short-chain fatty acids or numbers of regulatory T cells. Notably, imipenem-cilastatin treatment of mice with GVHD led to loss of the protective mucus lining of the colon (P < 0.01) and the compromising of intestinal barrier function (P < 0.05). Sequencing of mouse stool specimens showed an increase in Akkermansia muciniphila (P < 0.001), a commensal bacterium with mucus-degrading capabilities, raising the possibility that mucus degradation may contribute to murine GVHD. We demonstrate an underappreciated risk for the treatment of allo-HSCT recipients with antibiotics that may exacerbate GVHD in the colon.


Subject(s)
Graft vs Host Disease/microbiology , Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Homologous/adverse effects , Animals , Anti-Bacterial Agents , CD4-Positive T-Lymphocytes/metabolism , Cilastatin/therapeutic use , Cilastatin, Imipenem Drug Combination , Colon/microbiology , Drug Combinations , Feces/microbiology , Female , Flow Cytometry , Gastrointestinal Microbiome/drug effects , Graft vs Host Disease/etiology , Humans , Imipenem/therapeutic use , Interleukin-23 , Mice , Mice, Inbred C57BL , Penicillanic Acid/analogs & derivatives , Penicillanic Acid/therapeutic use , Phylogeny , Piperacillin/therapeutic use , Piperacillin, Tazobactam Drug Combination , Verrucomicrobia/classification , Verrucomicrobia/drug effects , Verrucomicrobia/genetics
11.
Proc Natl Acad Sci U S A ; 112(37): 11672-7, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26261345

ABSTRACT

In regions with high malaria endemicity, the withdrawal of chloroquine (CQ) as first-line treatment of Plasmodium falciparum infections has typically led to the restoration of CQ susceptibility through the reexpansion of the wild-type (WT) allele K76 of the chloroquine resistance transporter gene (pfcrt) at the expense of less fit mutant alleles carrying the CQ resistance (CQR) marker K76T. In low-transmission settings, such as South America, drug resistance mutations can attain 100% prevalence, thereby precluding the return of WT parasites after the complete removal of drug pressure. In French Guiana, despite the fixation of the K76T allele, the prevalence of CQR isolates progressively dropped from >90% to <30% during 17 y after CQ withdrawal in 1995. Using a genome-wide association study with CQ-sensitive (CQS) and CQR isolates, we have identified a single mutation in pfcrt encoding a C350R substitution that is associated with the restoration of CQ susceptibility. Genome editing of the CQR reference strain 7G8 to incorporate PfCRT C350R caused a complete loss of CQR. A retrospective molecular survey on 580 isolates collected from 1997 to 2012 identified all C350R mutant parasites as being CQS. This mutation emerged in 2002 and rapidly spread throughout the P. falciparum population. The C350R allele is also associated with a significant decrease in piperaquine susceptibility in vitro, suggesting that piperaquine pressure in addition to potential fitness costs associated with the 7G8-type CQR pfcrt allele may have selected for this mutation. These findings have important implications for understanding the evolutionary dynamics of antimalarial drug resistance.


Subject(s)
Chloroquine/therapeutic use , Drug Resistance/genetics , Evolution, Molecular , Membrane Transport Proteins/genetics , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Alleles , French Guiana , Genetic Markers , Genome , Genotype , Haplotypes , Humans , Inhibitory Concentration 50 , Malaria/drug therapy , Phenotype , Plasmodium falciparum/drug effects , Prevalence , Principal Component Analysis , Quinolines/chemistry , Retrospective Studies
12.
Am J Trop Med Hyg ; 93(4): 801-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26149860

ABSTRACT

Large scale antibody responses in Plasmodium vivax malaria remains unexplored in the endemic setting. Protein microarray analysis of asexual-stage P. vivax was used to identify antigens recognized in sera from residents of hypoendemic Peruvian Amazon. Over 24 months, of 106 participants, 91 had two symptomatic P. vivax malaria episodes, 11 had three episodes, 3 had four episodes, and 1 had five episodes. Plasmodium vivax relapse was distinguished from reinfection by a merozoite surface protein-3α restriction fragment length polymorphism polymerase chain reaction (MSP3α PCR-RFLP) assay. Notably, P. vivax reinfection subjects did not have higher reactivity to the entire set of recognized P. vivax blood-stage antigens than relapse subjects, regardless of the number of malaria episodes. The most highly recognized P. vivax proteins were MSP 4, 7, 8, and 10 (PVX_003775, PVX_082650, PVX_097625, and PVX_114145); sexual-stage antigen s16 (PVX_000930); early transcribed membrane protein (PVX_090230); tryptophan-rich antigen (Pv-fam-a) (PVX_092995); apical merozoite antigen 1 (PVX_092275); and proteins of unknown function (PVX_081830, PVX_117680, PVX_118705, PVX_121935, PVX_097730, PVX_110935, PVX_115450, and PVX_082475). Genes encoding reactive proteins exhibited a significant enrichment of non-synonymous nucleotide variation, an observation suggesting immune selection. These data identify candidates for seroepidemiological tools to support malaria elimination efforts in P. vivax-endemic regions.


Subject(s)
Antibodies, Protozoan/immunology , Malaria, Vivax/immunology , Plasmodium vivax/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibody Formation , Antigens, Protozoan/immunology , Child , Child, Preschool , Female , Gene Expression/immunology , Humans , Male , Plasmodium vivax/genetics , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Protein Array Analysis , Recurrence , Young Adult
13.
Infect Immun ; 83(1): 276-85, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25368109

ABSTRACT

As the intensity of malaria transmission has declined, Plasmodium falciparum parasite populations have displayed decreased clonal diversity resulting from the emergence of many parasites with common genetic signatures (CGS). We have monitored such CGS parasite clusters from 2006 to 2013 in Thiès, Senegal, using the molecular barcode. The first, and one of the largest observed clusters of CGS parasites, was present in 24% of clinical isolates in 2008, declined to 3.4% of clinical isolates in 2009, and then disappeared. To begin to explore the relationship between the immune responses of the population and the emergence and decline of specific parasite genotypes, we have determined whether antibodies to CGS parasites correlate with their prevalence. We measured (i) antibodies capable of inhibiting parasite growth in culture and (ii) antibodies recognizing the surfaces of infected erythrocytes (RBCs). IgG obtained from volunteers in 2009 showed increased reactivity to the surfaces of CGS-parasitized erythrocytes over IgG from 2008. Since P. falciparum EMP-1 (PfEMP-1) is a major variant surface antigen, we used var Ups quantitative reverse transcription-PCR (qRT-PCR) and sequencing with degenerate DBL1α domain primers to characterize the var genes expressed by CGS parasites after short-term in vitro culture. CGS parasites show upregulation of UpsA var genes and 2-cysteine-containing PfEMP-1 molecules and express the same dominant var transcript. Our work indicates that the CGS parasites in this cluster express similar var genes, more than would be expected by chance in the population, and that there is year-to-year variation in immune recognition of surface antigens on CGS parasite-infected erythrocytes. This study lays the groundwork for detailed investigations of the mechanisms driving the expansion or contraction of specific parasite clones in the population.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Antigens, Protozoan/genetics , Cluster Analysis , DNA Barcoding, Taxonomic , Humans , Immunoglobulin G/blood , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Senegal/epidemiology
14.
J Infect Dis ; 211(8): 1342-51, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25381370

ABSTRACT

BACKGROUND: Persons with blood-stage Plasmodium falciparum parasitemia in the absence of symptoms are considered to be clinically immune. We hypothesized that asymptomatic subjects with P. falciparum parasitemia would differentially recognize a subset of P. falciparum proteins on a genomic scale. METHODS AND FINDINGS: Compared with symptomatic subjects, sera from clinically immune, asymptomatically infected individuals differentially recognized 51 P. falciparum proteins, including the established vaccine candidate PfMSP1. Novel, hitherto unstudied hypothetical proteins and other proteins not previously recognized as potential vaccine candidates were also differentially recognized. Genes encoding the proteins differentially recognized by the Peruvian clinically immune individuals exhibited a significant enrichment of nonsynonymous nucleotide variation, an observation consistent with these genes undergoing immune selection. CONCLUSIONS: A limited set of P. falciparum protein antigens was associated with the development of naturally acquired clinical immunity in the low-transmission setting of the Peruvian Amazon. These results imply that, even in a low-transmission setting, an asexual blood-stage vaccine designed to reduce clinical malaria symptoms will likely need to contain large numbers of often-polymorphic proteins, a finding at odds with many current efforts in the design of vaccines against asexual blood-stage P. falciparum.


Subject(s)
Malaria, Falciparum/blood , Malaria, Falciparum/immunology , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Protozoan Proteins/blood , Adolescent , Adult , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Child , Female , Humans , Malaria Vaccines/immunology , Male , Middle Aged , Parasitemia/blood , Parasitemia/immunology , Parasitemia/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Young Adult
15.
Genome Biol ; 15(11): 511, 2014.
Article in English | MEDLINE | ID: mdl-25395010

ABSTRACT

BACKGROUND: Drug resistance remains a major public health challenge for malaria treatment and eradication. Individual loci associated with drug resistance to many antimalarials have been identified, but their epistasis with other resistance mechanisms has not yet been elucidated. RESULTS: We previously described two mutations in the cytoplasmic prolyl-tRNA synthetase (cPRS) gene that confer resistance to halofuginone. We describe here the evolutionary trajectory of halofuginone resistance of two independent drug resistance selections in Plasmodium falciparum. Using this novel methodology, we discover an unexpected non-genetic drug resistance mechanism that P. falciparum utilizes before genetic modification of the cPRS. P. falciparum first upregulates its proline amino acid homeostasis in response to halofuginone pressure. We show that this non-genetic adaptation to halofuginone is not likely mediated by differential RNA expression and precedes mutation or amplification of the cPRS gene. By tracking the evolution of the two drug resistance selections with whole genome sequencing, we further demonstrate that the cPRS locus accounts for the majority of genetic adaptation to halofuginone in P. falciparum. We further validate that copy-number variations at the cPRS locus also contribute to halofuginone resistance. CONCLUSIONS: We provide a three-step model for multi-locus evolution of halofuginone drug resistance in P. falciparum. Informed by genomic approaches, our results provide the first comprehensive view of the evolutionary trajectory malaria parasites take to achieve drug resistance. Our understanding of the multiple genetic and non-genetic mechanisms of drug resistance informs how we will design and pair future anti-malarials for clinical use.


Subject(s)
Biological Evolution , Drug Resistance , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Genomics , Humans , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Mutation , Piperidines/therapeutic use , Plasmodium falciparum/genetics , Protozoan Proteins , Quinazolinones/therapeutic use , Sequence Analysis, DNA
16.
Mol Cell Proteomics ; 13(10): 2705-24, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25056935

ABSTRACT

One of the critical gaps in malaria transmission biology and surveillance is our lack of knowledge about Plasmodium falciparum gametocyte biology, especially sexual dimorphic development and how sex ratios that may influence transmission from the human to the mosquito. Dissecting this process has been hampered by the lack of sex-specific protein markers for the circulating, mature stage V gametocytes. The current evidence suggests a high degree of conservation in gametocyte gene complement across Plasmodium, and therefore presumably for sex-specific genes as well. To better our understanding of gametocyte development and subsequent infectiousness to mosquitoes, we undertook a Systematic Subtractive Bioinformatic analysis (filtering) approach to identify sex-specific P. falciparum NF54 protein markers based on a comparison with the Dd2 strain, which is defective in producing males, and with syntenic male and female proteins from the reanalyzed and updated P. berghei (related rodent malaria parasite) gametocyte proteomes. This produced a short list of 174 male- and 258 female-enriched P. falciparum stage V proteins, some of which appear to be under strong diversifying selection, suggesting ongoing adaptation to mosquito vector species. We generated antibodies against three putative female-specific gametocyte stage V proteins in P. falciparum and confirmed either conserved sex-specificity or the lack of cross-species sex-partitioning. Finally, our study provides not only an additional resource for mass spectrometry-derived evidence for gametocyte proteins but also lays down the foundation for rational screening and development of novel sex-partitioned protein biomarkers and transmission-blocking vaccine candidates.


Subject(s)
Computational Biology/methods , Life Cycle Stages , Plasmodium falciparum/growth & development , Protozoan Proteins/analysis , Animals , Female , Gene Expression Regulation, Developmental , Male , Plasmodium falciparum/metabolism , Sex Factors
17.
Proc Natl Acad Sci U S A ; 110(50): 20129-34, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24259712

ABSTRACT

Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and nonsynonymous polymorphisms are virtually indistinguishable. We hypothesized that the complicated life cycle of malaria parasites might lead to qualitatively different population genetics from that predicted from the classical Wright-Fisher (WF) model, which assumes a single random-mating population with a finite and constant population size in an organism with nonoverlapping generations. This paper summarizes simulation studies of random genetic drift and selection in malaria parasites that take into account their unusual life history. Our results show that random genetic drift in the malaria life cycle is more pronounced than under the WF model. Paradoxically, the efficiency of purifying selection in the malaria life cycle is also greater than under WF, and the relative efficiency of positive selection varies according to conditions. Additionally, the site-frequency spectrum under neutrality is also more skewed toward low-frequency alleles than expected with WF. These results highlight the importance of considering the malaria life cycle when applying existing population genetic tools based on the WF model. The same caveat applies to other species with similarly complex life cycles.


Subject(s)
Founder Effect , Genetic Drift , Models, Genetic , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology , Selection, Genetic , Computer Simulation , Gene Frequency , Genetics, Population , Polymorphism, Single Nucleotide/genetics
18.
J Biol Chem ; 288(27): 19429-40, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23720749

ABSTRACT

Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.


Subject(s)
Drug Resistance , Epigenesis, Genetic , Genes, Protozoan , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Antimalarials/therapeutic use , Antiporters/genetics , Antiporters/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Enzyme Inhibitors/pharmacology , Humans , Ion Transport/drug effects , Ion Transport/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/genetics , Nucleosides/pharmacology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...