Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Article in English | MEDLINE | ID: mdl-38844370

ABSTRACT

BACKGROUND AND PURPOSE: Considering recent iodinated contrast media (ICM) shortages, this study compared reduced ICM and standard dose CTP acquisitions, and the impact of deep learning (DL)-denoising on CTP image quality in preclinical and clinical studies. MATERIALS AND METHODS: Twelve swine underwent 9 CTP exams each, performed at combinations of 3 different X-ray (37, 67, and 127mAs) and ICM doses (10, 15, and 20mL). Clinical CTP acquisitions performed before and during the ICM shortage and protocol change (from 40 mL to 30 mL) were retrospectively included. Eleven patients with reduced ICM dose and 11 propensity-score-matched controls with standard ICM dose were included. A Residual Encoder-Decoder Convolutional-Neural-Network (RED-CNN) was trained for CTP denoising using K-space-Weighted Image Average (KWIA) filtered CTP images as the target. The standard, RED-CNN denoised, and KWIA noise-filtered images for animal and human studies were compared for quantitative SNR and qualitative image evaluation. RESULTS: The SNR of animal CTP images decreased with reductions in ICM and mAs doses. Contrast dose reduction had a greater effect on SNR than mAs reduction. Noise-filtering by KWIA and RED-CNN denoising progressively improved SNR of CTP maps, with RED-CNN resulting in the highest SNR. The SNR of clinical CTP images was generally lower with reduced ICM dose, which was improved by KWIA and RED-CNN denoising (p<0.05). Qualitative readings consistently rated RED-CNN denoised CTP as best quality, followed by KWIA and then standard CTP images. CONCLUSIONS: DL-denoising can improve image quality for low ICM CTP protocols, and could approximate standard ICM dose CTP, in addition to potentially improving image quality for low mAs acquisitions. ABBREVIATIONS: ICM=iodinated contrast media; DL=deep learning; KWIA=k-space weighted image average; LCD=low-contrast dose; SCD=standard contrast dose; RED-CNN=Residual Encoder-Decoder Convolutional Neural Network; PSNR=Peak Signal to Noise Ratio; RMSE=Root Mean Squared Error; SSIM=Structural Similarity Index.

2.
Eur Radiol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856782

ABSTRACT

OBJECTIVES: Aneurysm wall enhancement (AWE) on high-resolution contrast-enhanced vessel wall MRI (VWMRI) is an emerging biomarker for intracranial aneurysms (IAs) stability. Quantification methods of AWE in the literature, however, are variable. We aimed to determine the optimal post-contrast timing to quantify AWE in both saccular and fusiform IAs. MATERIALS AND METHODS: Consecutive patients with unruptured IAs were prospectively recruited. VWMRI was acquired on 1 pre-contrast and 4 consecutive post-contrast phases (each phase was 9 min). Signal intensity values of cerebrospinal fluid (CSF) and aneurysm wall on pre- and 4 post-contrast phases were measured to determine the aneurysm wall enhancement index (WEI). AWE was also qualitatively analyzed on post-contrast images using previous grading criteria. The dynamic changes of AWE grade and WEI were analyzed for both saccular and fusiform IAs. RESULTS: Thirty-four patients with 42 IAs (27 saccular IAs and 15 fusiform IAs) were included. The changes in AWE grade occurred in 8 (30%) saccular IAs and 6 (40%) in fusiform IAs during the 4 post-contrast phases. The WEI of fusiform IAs decreased 22.0% over time after contrast enhancement (p = 0.009), while the WEI of saccular IAs kept constant during the 4 post-contrast phases (p > 0.05). CONCLUSIONS: When performing quantitative analysis of AWE, acquiring post-contrast VWMRI immediately after contrast injection achieves the strongest AWE for fusiform IAs. While the AWE degree is stable for 36 min after contrast injection for saccular IAs. CLINICAL RELEVANCE STATEMENT: The standardization of imaging protocols and analysis methods for AWE will be helpful for imaging surveillance and further treatment decisions of patients with unruptured IAs. KEY POINTS: Imaging protocols and measurements of intracranial aneurysm wall enhancement are reported heterogeneously. Aneurysm wall enhancement for fusiform intracranial aneurysms (IAs) is strongest immediately post-contrast, and stable for 36 min for saccular IAs. Future multi-center studies should investigate aneurysm wall enhancement as an emerging marker of aneurysm growth and rupture.

3.
Transl Stroke Res ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856829

ABSTRACT

The treatment of intracranial aneurysms is dictated by its risk of rupture in the future. Several clinical and radiological risk factors for aneurysm rupture have been described and incorporated into prediction models. Despite the recent technological advancements in aneurysm imaging, linear length and visible irregularity with a bleb are the only radiological measure used in clinical prediction models. The purpose of this article is to summarize both the standard imaging techniques, including their limitations, and the advanced techniques being used experimentally to image aneurysms. It is expected that as our understanding of advanced techniques improves, and their ability to predict clinical events is demonstrated, they become an increasingly routine part of aneurysm assessment. It is important that neurovascular specialists understand the spectrum of imaging techniques available.

4.
J Neurointerv Surg ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719445

ABSTRACT

Intracranial atherosclerotic disease (ICAD) involves the build-up of atherosclerotic plaques in cerebral arteries, significantly contributing to stroke worldwide. Diagnosing ICAD entails various techniques that measure arterial stenosis severity. Digital subtraction angiography, CT angiography, and magnetic resonance angiography are established methods for assessing stenosis. High-resolution MRI offers additional insights into plaque morphology including plaque burden, hemorrhage, remodeling, and contrast enhancement. These metrics and plaque traits help identify symptomatic plaques. Techniques like transcranial Doppler, CT perfusion, computational fluid dynamics, and quantitative MRA analyze blood flow restrictions due to ICAD. Intravascular ultrasound or optical coherence tomography have a very high spatial resolution and can assess the structure of the arterial wall and the plaque from the lumen of the target vascular territory. Positron emission tomography could further detect inflammation markers. This review aims to provide a comprehensive overview of the spectrum of current modalities for atherosclerotic plaque analysis and risk stratification.

5.
Article in English | MEDLINE | ID: mdl-38789121

ABSTRACT

BACKGROUND AND PURPOSE: The Circle of Willis (COW) is a crucial mechanism for cerebral collateral circulation. This proof-ofconcept study aims to develop and assess an analysis method to characterize the hemodynamics of the arterial segments in COW using arterial spin labeling (ASL) based non-contrast enhanced dynamic magnetic resonance angiography (dMRA). MATERIALS AND METHODS: The developed analysis method uses a graph model, bootstrap strategy, and ensemble learning methodologies to determine the time-curve shift from ASL dMRA to estimate the flow direction within the COW. The performance of the method was assessed on 52 subjects, using the flow direction, either antegrade or retrograde, derived from 3D phase contrast (PC) MRI as the reference. RESULTS: A total of 340 arterial segments in COW were evaluated, among which 30 (8.8%) had retrograde flow according to 3D PC. The ASL dMRA-based flow direction estimation has an accuracy, sensitivity, and specificity of 95.47%, 80%, and 96.34%, respectively. CONCLUSIONS: Using ASL dMRA and the developed image analysis method to estimate the flow direction in COW is feasible. This study provides a new method to assess the hemodynamics of the COW, which could be useful for the diagnosis and study of cerebrovascular diseases. ABBREVIATIONS: COW = Circle of Willis; ASL = arterial spin labeling; dMRA =dynamic magnetic resonance angiography; PC = phase contrast.

6.
Nucl Med Commun ; 45(6): 474-480, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38465449

ABSTRACT

OBJECTIVE: To compare the incidence and natural course of reactive axillary lymph nodes (RAL) between mRNA and attenuated whole-virus vaccines using Deauville criteria. METHODS: In this multi-institutional PET-CT study comprising multiple vaccine types (Pfizer-BioNTech/Comirnaty, Moderna/Spikevax, Sinovac/CoronaVac and Janssen vaccines), we evaluated the incidence and natural course of RAL in a large cohort of oncological patients utilizing a standardized Deauville scaling system (n=522; 293 Female, Deauville 3-5 positive for RAL). Univariate and multivariate analyses were conducted to evaluate the predictive value of clinical parameters (absolute neutrophil count [ANC], platelets, age, sex, tumor type, and vaccine-to-PET interval) for PET positivity. RESULTS: Pfizer-BioNTech/Comirnaty and Moderna vaccines revealed similar RAL incidences for the first 20 days after the second dose of vaccine administration (44% for the first 10 days for both groups, 26% vs. 20% for 10-20 days, respectively for Moderna and Pfizer). However, Moderna recipients revealed significantly higher incidences of RAL after 20 days compared to Pfizer-BioNTech/Comirnaty, with nodal reactivity spanning up to the 9th week post-vaccination (15% vs. 4%, respectively P  < 0.001). No RAL was observed in patients who received either a single dose of J&J vaccine or two doses of CroronaVac. Younger patients showed increased likelihood of RAL, otherwise, clinical/demographic parameters were not predictive of RAL ( P  = 0.014 for age, P  > 0.05 for additional clinical/demographic parameters). CONCLUSION: RAL based on strict PET criteria was observed with mRNA but not with attenuated whole-virus vaccines, in line with higher immunogenicity and stronger protection offered by mRNA vaccines.


Subject(s)
Axilla , COVID-19 Vaccines , Lymph Nodes , Humans , Female , Male , Middle Aged , Aged , Vaccination , Vaccines, Attenuated , Positron Emission Tomography Computed Tomography , Adult , COVID-19/prevention & control , mRNA Vaccines , Retrospective Studies , RNA, Messenger/genetics , RNA, Messenger/metabolism , Aged, 80 and over , Vaccines, Synthetic
7.
AJNR Am J Neuroradiol ; 45(3): 262-270, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38388686

ABSTRACT

BACKGROUND AND PURPOSE: Intracranial plaque enhancement (IPE) identified by contrast-enhanced vessel wall MR imaging (VW-MR imaging) is an emerging marker of plaque instability related to stroke risk, but there was no standardized timing for postcontrast acquisition. We aim to explore the optimal postcontrast timing by using multiphase contrast-enhanced VW-MR imaging and to test its performance in differentiating culprit and nonculprit lesions. MATERIALS AND METHODS: Patients with acute ischemic stroke due to intracranial plaque were prospectively recruited to undergo VW-MR imaging with 1 precontrast phase and 4 consecutive postcontrast phases (9 minutes and 13 seconds for each phase). The signal intensity (SI) values of the CSF and intracranial plaque were measured on 1 precontrast and 4 postcontrast phases to determine the intracranial plaque enhancement index (PEI). The dynamic changes of the PEI were compared between culprit and nonculprit plaques on the postcontrast acquisitions. RESULTS: Thirty patients with acute stroke (aged 59 ± 10 years, 18 [60%] men) with 113 intracranial plaques were included. The average PEI of all intracranial plaques significantly increased (up to 14%) over the 4 phases. There was significantly increased PEI over the 4 phases for culprit plaques (an average increase of 23%), but this was not observed for nonculprit plaques. For differentiating culprit and nonculprit plaques, we observed that the performance of IPE in the second postcontrast phase (cutoff = 0.83, AUC = 0.829 [0.746-0.893]) exhibited superior accuracy when compared with PEI in the first postcontrast phase (cutoff = 0.48; AUC = 0.768 [0.680-0.843]) (P = .022). CONCLUSIONS: A 9-minute delay of postcontrast acquisition can maximize plaque enhancement and better differentiate between culprit and nonculprit plaques. In addition, culprit and nonculprit plaques have different enhancement temporal patterns, which should be evaluated in future studies.


Subject(s)
Intracranial Arteriosclerosis , Ischemic Stroke , Plaque, Atherosclerotic , Stroke , Male , Humans , Female , Intracranial Arteriosclerosis/pathology , Magnetic Resonance Imaging/methods , Plaque, Atherosclerotic/pathology
8.
Br J Radiol ; 97(1155): 614-621, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38303547

ABSTRACT

OBJECTIVES: To compare brain MRI measures between Adult Changes in Thought (ACT) participants who underwent research, clinical, or both MRI scans, and clinical health measures across the groups and non-MRI subjects. METHODS: Retrospective cohort study leveraging MRI, clinical, demographic, and medication data from ACT. Three neuroradiologists reviewed MRI scans using NIH Neuroimaging Common Data Elements (CDEs). Total brain and white matter hyperintensity (WMH) volumes, clinical characteristics, and outcome measures of brain and overall health were compared between groups. 1166 MRIs were included (77 research, 1043 clinical, and 46 both) and an additional 3146 participants with no MRI were compared. RESULTS: Compared to the group with research MRI only, the clinical MRI group had higher prevalence of the following: acute infarcts, chronic haematoma, subarachnoid haemorrhage, subdural haemorrhage, haemorrhagic transformation, and hydrocephalus (each P < .001). Quantitative WMH burden was significantly lower (P < .001) and total brain volume significantly higher (P < .001) in research MRI participants compared to other MRI groups. Prevalence of hypertension, self-reported cerebrovascular disease, congestive heart failure, dementia, and recent hospitalization (all P < .001) and diabetes (P = .002) differed significantly across groups, with smaller proportions in the research MRI group. CONCLUSION: In ageing populations, significant differences were observed in MRI metrics between research MRI and clinical MRI groups, and clinical health metric differences between research MRI, clinical MRI, and no-MRI groups. ADVANCES IN KNOWLEDGE: This questions whether research cohorts can adequately represent the greater ageing population undergoing imaging. These findings may also be useful to radiologists when interpreting neuroimaging of ageing.


Subject(s)
Brain , Cerebrovascular Disorders , Adult , Humans , Retrospective Studies , Brain/diagnostic imaging , Aging , Neuroimaging , Magnetic Resonance Imaging/methods
9.
J Neurointerv Surg ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320850

ABSTRACT

BACKGROUND: Abnormal intracranial aneurysm (IA) wall motion has been associated with IA growth and rupture. Recently, a new image processing algorithm called amplified Flow (aFlow) has been used to successfully track IA wall motion by combining the amplification of cine and four-dimensional (4D) Flow MRI. We sought to apply aFlow to assess wall motion as a potential marker of IA growth in a paired-wise analysis of patients with growing versus stable aneurysms. METHODS: In this retrospective case-control study, 10 patients with growing IAs and a matched cohort of 10 patients with stable IAs who had baseline 4D Flow MRI were included. The aFlow was used to amplify and extract IA wall displacements from 4D Flow MRI. The associations of aFlow parameters with commonly used risk factors and morphometric features were assessed using paired-wise univariate and multivariate analyses. RESULTS: aFlow quantitative results showed significantly (P=0.035) higher wall motion displacement depicted by mean±SD 90th% values of 2.34±0.72 in growing IAs versus 1.39±0.58 in stable IAs with an area under the curve of 0.85. There was also significantly (P<0.05) higher variability of wall deformation across IA geometry in growing versus stable IAs depicted by the dispersion variables including 121-150% larger standard deviation ([Formula: see text]) and 128-161% wider interquartile range [Formula: see text]. CONCLUSIONS: aFlow-derived quantitative assessment of IA wall motion showed greater wall motion and higher variability of wall deformation in growing versus stable IAs.

10.
J Neurointerv Surg ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38171610

ABSTRACT

BACKGROUND: In aneurysmal subarachnoid hemorrhage patients with multiple intracranial aneurysms (aSAH-MIA patients), the risk of secondary unruptured intracranial aneurysms is inconsistent. This study aimed to explore the risk of unruptured aneurysms in Chinese aSAH-MIA patients. METHODS: The medical records and angiographic images of aSAH-MIA patients from eight cerebrovascular centers in China were retrospectively reviewed and analyzed. Patients with a single unruptured intracranial aneurysm (UIA) and no prior aSAH were used as controls. Propensity score matching (PSM) was employed to balance the differences in age, gender, aneurysm size, aneurysm site, and follow-up duration between the two groups. RESULTS: The study included 267 unruptured aneurysms from 204 aSAH-MIA patients and 769 single UIA. After PSM, 201 aneurysms were enrolled in the aSAH-MIA group and 201 aneurysms in the control group. The mean follow-up was 2.2 years. Thirty-four aneurysm instability events (28 growth and 6 rupture, 16.9%) occurred during follow-up in the aSAH-MIA group and 16 instability events (13 growth and 3 rupture, 8%) occurred in the control group. Risk factors for aneurysmal instability were aneurysm irregularity (OR 2.53; 95% CI 1.18 to 4.31), higher size ratio (OR 1.23; 95% CI 1.37 to 4.39), and middle cerebral artery location (OR 1.86; 95% CI 1.03 to 3.17). The risk of aneurysmal instability was substantially elevated in the aSAH-MIA group (HR 2.07; 95% CI 1.12 to 3.02). CONCLUSIONS: Unruptured aneurysms in Chinese aSAH-MIA patients exhibited higher risks of growth and rupture than in patients with a single UIA. Middle cerebral artery location, higher size ratio and irregular shape were associated with higher risk of growth or rupture.

11.
Eur Radiol ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224377

ABSTRACT

OBJECTIVES: Wall remodeling and inflammation accompany symptomatic unruptured intracranial aneurysms (UIAs). The volume transfer constant (Ktrans) of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) reflects UIA wall permeability. Aneurysmal wall enhancement (AWE) on vessel wall MRI (VWI) is associated with inflammation. We hypothesized that Ktrans is related to symptomatic UIAs and AWE. METHODS: Consecutive patients with UIAs were prospectively recruited for 3-T DCE-MRI and VWI from January 2018 to March 2023. UIAs were classified as asymptomatic and symptomatic if associated with sentinel headache or oculomotor nerve palsy. Ktrans and AWE were assessed on DCE-MRI and VWI, respectively. AWE was evaluated using the AWE pattern and wall enhancement index (WEI). Spearman's correlation coefficient and univariate and multivariate analyses were used to assess correlations between parameters. RESULTS: We enrolled 82 patients with 100 UIAs (28 symptomatic and 72 asymptomatic). The median Ktrans (2.1 versus 0.4 min-1; p < 0.001) and WEI (1.5 versus 0.4; p < 0.001) were higher for symptomatic aneurysms than for asymptomatic aneurysms. Ktrans (odds ratio [OR]: 1.60, 95% confidence interval [95% CI]: 1.01-2.52; p = 0.04) and WEI (OR: 3.31, 95% CI: 1.05-10.42; p = 0.04) were independent risk factors for symptomatic aneurysms. Ktrans was positively correlated with WEI (Spearman's coefficient of rank correlation (rs) = 0.41, p < 0.001). The combination of Ktrans and WEI achieved an area under the curve of 0.81 for differentiating symptomatic from asymptomatic aneurysms. CONCLUSIONS: Ktrans may be correlated with symptomatic aneurysms and AWE. Ktrans and WEI may provide an additional value than the PHASES score for risk stratification of UIAs. CLINICAL RELEVANCE STATEMENT: The volume transfer constant (Ktrans) from DCE-MRI perfusion is associated with symptomatic aneurysms and provides additional value above the clinical PHASES score for risk stratification of intracranial aneurysms. KEY POINTS: • The volume transfer constant is correlated with intracranial aneurysm symptoms and aneurysmal wall enhancement. • Dynamic contrast-enhanced and vessel wall MRI facilitates understanding of the pathophysiological characteristics of intracranial aneurysm walls. • The volume transfer constant and wall enhancement index perform better than the traditional PHASES score in differentiating symptomatic aneurysms.

12.
Clin Imaging ; 107: 110088, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277858

ABSTRACT

PURPOSE: To evaluate relative and absolute utilization trends and practice patterns in the United States for MRA and CTA. METHODS: Using Medicare Part B physician payment databases (2013-2020), MRA and CTA interpreting physicians and exams were identified using the unique MRA and CTA Healthcare Common Procedure Coding System codes. The number of exams, physicians, demographics, use of contrast, and payments were summarized annually and analyzed to evaluate trends before and during the first year of the COVID-19 pandemic. RESULTS: From 2013 to 2019, the annual number of MRA exams performed decreased by 17.9 %, while the number of CTA exams increased by 90.3 %. The number of physicians interpreting MRA decreased in both hospital (-17.2 %) and outpatient (-7.5 %) environments. The number of physicians interpreting CTA increased in both hospital (+29.4 %) and outpatient (+54.3 %) environments. During the first year of the COVID-19 pandemic, MRA utilization decreased across all imaging environments by 25.0 % whereas CTA only decreased by 5.5 %. Intracranial MRA studies were most often performed without contrast, while contrast use for neck MRA was performed at similar rates as non-contrast exams. CONCLUSION: The overall utilization of MRA and the number of interpreting physicians are decreasing. On the other hand, CTA use and its number of interpreting physicians are increasing. During the first year of the COVID-19 pandemic, use of both MRA and CTA decreased, but the utilization of MRA decreased at five times the rate of CTA.


Subject(s)
COVID-19 , Medicare Part B , Aged , Humans , United States/epidemiology , Computed Tomography Angiography , Magnetic Resonance Angiography/methods , Pandemics , Magnetic Resonance Spectroscopy , COVID-19/epidemiology
13.
Transl Stroke Res ; 15(2): 433-445, 2024 04.
Article in English | MEDLINE | ID: mdl-36792794

ABSTRACT

Serum interleukin-1 (IL-1) are possibly indicative of the inflammation in the intracranial aneurysm (IA) wall. This study aimed to investigate whether IL-1 could discriminate the unstable IAs (ruptured intracranial aneurysms (RIAs) and symptomatic unruptured intracranial aneurysms (UIAs)) from stable, asymptomatic UIAs. IA tissues and blood samples from 35 RIA patients and 35 UIA patients were collected between January 2017 and June 2020 as the derivation cohort. Blood samples from 211 patients with UIAs were collected between January 2021 and June 2022 as the validation cohort (including 63 symptomatic UIAs). Blood samples from 35 non-cerebral-edema meningioma patients (non-inflammatory control) and 19 patients with unknown-cause subarachnoid hemorrhage (hemorrhagic control) were also collected. IL-1ß and IL-1.ra (IL-1 receptor antagonist) were measured in serum and IA tissues, and the IL-1 ratio was calculated as log10 (IL-1.ra/IL-1ß). Based on the derivation cohort, multivariate logistic analysis showed that IL-1ß (odds ratio, 1.48, P = 0.001) and IL-1.ra (odds ratio, 0.74, P = 0.005) were associated with RIAs. The IL-1 ratio showed an excellent diagnostic accuracy for RIAs (c-statistic, 0.91). Histological analysis confirmed the significant correlation of IL-1 between serum and aneurysm tissues. IL-1 ratio could discriminate UIAs from non-inflammatory controls (c-statistic, 0.84), and RIAs from hemorrhagic controls (c-statistic, 0.95). Based on the validation cohort, the combination of IL-1 ratio and PHASES score had better diagnostic accuracy for symptomatic UIAs than PHASES score alone (c-statistic, 0.88 vs 0.80, P < 0.001). Serum IL-1 levels correlate with aneurysm tissue IL-1 levels and unstable aneurysm status, and could serve as a potential biomarker for IA instability.


Subject(s)
Aneurysm, Ruptured , Intracranial Aneurysm , Subarachnoid Hemorrhage , Humans , Intracranial Aneurysm/complications , Intracranial Aneurysm/diagnosis , Interleukin-1 , Subarachnoid Hemorrhage/diagnosis , Subarachnoid Hemorrhage/etiology , Inflammation/complications , Aneurysm, Ruptured/complications , Aneurysm, Ruptured/pathology
14.
J Magn Reson Imaging ; 59(3): 1045-1055, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37259904

ABSTRACT

BACKGROUND: Lenticulostriate artery (LSA) obstruction is a potential cause of subcortical infarcts. However, MRI LSA evaluation at 3T is challenging. PURPOSE: To investigate middle cerebral artery (MCA) plaque characteristics and LSA morphology associated with subcortical infarctions in LSA territories using 7-T vessel wall MRI (VW-MRI) and time-of-flight MR angiography (TOF-MRA). STUDY TYPE: Prospective. POPULATION: Sixty patients with 80 MCA atherosclerotic plaques (37 culprit and 43 non-culprit). FIELD STRENGTH/SEQUENCE: 7-T with 3D TOF-MRA and T1-weighted 3D sampling perfection with application-optimized contrast using different flip angle evolutions (SPACE) sequences. ASSESSMENT: Plaque distribution (superior, inferior, ventral, or dorsal walls), LSA origin involvement, LSA morphology (numbers of stems, branches, and length), and plaque characteristics (normalized wall index, maximal wall thickness, plaque length, remodeling index, intraplaque hemorrhage, and plaque surface morphology (regular or irregular)) were assessed. STATISTICAL TESTS: Least absolute shrinkage and selection operator regression, generalized estimating equations regression, receiver operating characteristic curve, independent t-test, Mann-Whitney U test, Chi-square test, Fisher's exact test, and intra-class coefficient. A P value <0.05 was considered statistically significant. RESULTS: Plaque irregular surface, superior wall plaque, longer plaque length, LSA origin involvement, fewer LSA stems, and shorter total and average lengths of LSAs were significantly associated with culprit plaques. Multivariable logistic analysis confirmed that LSA origin involvement (OR, 28.51; 95% CI, 6.34-181.02) and plaque irregular surface (OR, 8.32; 95% CI, 1.41-64.73) were independent predictors in differentiating culprit from non-culprit plaques. A combination of LSA origin involvement and plaque irregular surface (area under curve = 0.92; [95% CI, 0.86-0.98]) showed good performance in identifying culprit plaques, with sensitivity and specificity of 86.5% and 86.0%, respectively. DATA CONCLUSION: 7-T VW-MRI and TOF-MRA can demonstrate plaque involvement with LSA origins. MCA plaque characteristics derived from 7-T VW-MRI showed good diagnostic accuracy in determining the occurrence of subcortical infarctions. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.


Subject(s)
Middle Cerebral Artery , Plaque, Atherosclerotic , Humans , Prospective Studies , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Cerebral Infarction , Magnetic Resonance Angiography
15.
JACC Cardiovasc Imaging ; 17(1): 62-75, 2024 01.
Article in English | MEDLINE | ID: mdl-37823860

ABSTRACT

BACKGROUND: Carotid artery atherosclerosis is highly prevalent in the general population and is a well-established risk factor for acute ischemic stroke. Although the morphological characteristics of vulnerable plaques are well recognized, there is a lack of consensus in reporting and interpreting carotid plaque features. OBJECTIVES: The aim of this paper is to establish a consistent and comprehensive approach for imaging and reporting carotid plaque by introducing the Plaque-RADS (Reporting and Data System) score. METHODS: A panel of experts recognized the necessity to develop a classification system for carotid plaque and its defining characteristics. Using a multimodality analysis approach, the Plaque-RADS categories were established through consensus, drawing on existing published reports. RESULTS: The authors present a universal classification that is applicable to both researchers and clinicians. The Plaque-RADS score offers a morphological assessment in addition to the prevailing quantitative parameter of "stenosis." The Plaque-RADS score spans from grade 1 (indicating complete absence of plaque) to grade 4 (representing complicated plaque). Accompanying visual examples are included to facilitate a clear understanding of the Plaque-RADS categories. CONCLUSIONS: Plaque-RADS is a standardized and reliable system of reporting carotid plaque composition and morphology via different imaging modalities, such as ultrasound, computed tomography, and magnetic resonance imaging. This scoring system has the potential to help in the precise identification of patients who may benefit from exclusive medical intervention and those who require alternative treatments, thereby enhancing patient care. A standardized lexicon and structured reporting promise to enhance communication between radiologists, referring clinicians, and scientists.


Subject(s)
Carotid Artery Diseases , Carotid Stenosis , Ischemic Stroke , Plaque, Atherosclerotic , Stroke , Humans , Ischemic Stroke/complications , Predictive Value of Tests , Carotid Arteries/diagnostic imaging , Carotid Artery Diseases/complications , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/therapy , Tomography, X-Ray Computed/adverse effects , Magnetic Resonance Imaging/adverse effects , Carotid Stenosis/complications , Stroke/etiology , Stroke/complications
16.
Eur Radiol ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108888

ABSTRACT

OBJECTIVES: In patients with an unruptured intracranial aneurysm, gadolinium enhancement of the aneurysm wall is associated with growth and rupture. However, most previous studies did not have a longitudinal design and did not adjust for aneurysm size, which is the main predictor of aneurysm instability and the most important determinant of wall enhancement. We investigated whether aneurysm wall enhancement predicts aneurysm growth and rupture during follow-up and whether the predictive value was independent of aneurysm size. MATERIALS AND METHODS: In this multicentre longitudinal cohort study, individual patient data were obtained from twelve international cohorts. Inclusion criteria were as follows: 18 years or older with ≥ 1 untreated unruptured intracranial aneurysm < 15 mm; gadolinium-enhanced aneurysm wall imaging and MRA at baseline; and MRA or rupture during follow-up. Patients were included between November 2012 and November 2019. We calculated crude hazard ratios with 95%CI of aneurysm wall enhancement for growth (≥ 1 mm increase) or rupture and adjusted for aneurysm size. RESULTS: In 455 patients (mean age (SD), 60 (13) years; 323 (71%) women) with 559 aneurysms, growth or rupture occurred in 13/194 (6.7%) aneurysms with wall enhancement and in 9/365 (2.5%) aneurysms without enhancement (crude hazard ratio 3.1 [95%CI: 1.3-7.4], adjusted hazard ratio 1.4 [95%CI: 0.5-3.7]) with a median follow-up duration of 1.2 years. CONCLUSIONS: Gadolinium enhancement of the aneurysm wall predicts aneurysm growth or rupture during short-term follow-up, but not independent of aneurysm size. CLINICAL RELEVANCE STATEMENT: Gadolinium-enhanced aneurysm wall imaging is not recommended for short-term prediction of growth and rupture, since it appears to have no additional value to conventional predictors. KEY POINTS: • Although aneurysm wall enhancement is associated with aneurysm instability in cross-sectional studies, it remains unknown whether it predicts risk of aneurysm growth or rupture in longitudinal studies. • Gadolinium enhancement of the aneurysm wall predicts aneurysm growth or rupture during short-term follow-up, but not when adjusting for aneurysm size. • While gadolinium-enhanced aneurysm wall imaging is not recommended for short-term prediction of growth and rupture, it may hold potential for aneurysms smaller than 7 mm.

17.
J Magn Reson Imaging ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38131254

ABSTRACT

BACKGROUND: Progression of intracranial atherosclerotic disease (ICAD) is associated with ischemic stroke events and can be quantified with three-dimensional (3D) intracranial vessel wall (IVW) MRI. However, longitudinal 3D IVW studies are limited and ICAD evolution remains relatively unknown. PURPOSE: To evaluate ICAD changes longitudinally and to characterize the imaging patterns of atherosclerotic plaque evolution. STUDY TYPE: Prospective. POPULATION: 37 patients (69 ± 12 years old, 12 females) with angiography confirmed ICAD. FIELD STRENGTH/SEQUENCE: 3.0T/3D time-of-flight gradient echo sequence and T1- and proton density-weighted fast spin echo sequences. ASSESSMENT: Each patient underwent baseline and 1-year follow-up IVW. Then, IVW data from both time points were jointly preprocessed using a multitime point, multicontrast, and multiplanar viewing workflow (known as MOCHA). Lumen and outer wall of plaques were traced and measured, and plaques were then categorized into progression, stable, and regression groups based on changes in plaque wall thickness. Patient demographic and clinical data were collected. Culprit plaques were identified based on cerebral ischemic infarcts. STATISTICAL TESTS: Generalized estimating equations-based linear and logistic regressions were used to assess associations between vascular risk factors, medications, luminal stenosis, IVW plaque imaging features, and longitudinal changes. A two-sided P-value<0.05 was considered statistically significant. RESULTS: Diabetes was significantly associated with ICAD progression, resulting in 6.6% decrease in lumen area and 6.7% increase in wall thickness at 1-year follow-up. After accounting for arterial segments, baseline contrast enhancement predicted plaque progression (odds ratio = 3.61). Culprit plaques experienced an average luminal expansion of 10.9% after 1 year. 74% of the plaques remained stable during follow-up. The regression group (18 plaques) showed significant increase in minimum lumen area (from 7.4 to 8.3 mm2 ), while the progression group (13 plaques) showed significant decrease in minimum lumen area (from 5.4 to 4.3 mm2 ). DATA CONCLUSION: Longitudinal 3D IVW showed ICAD remodeling on the lumen side. Culprit plaques demonstrated longitudinal luminal expansion compared with their non-culprit counterparts. Baseline plaque contrast enhancement and diabetes mellitus were found to be significantly associated with ICAD changes. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

18.
J Neuroimaging ; 33(6): 933-940, 2023.
Article in English | MEDLINE | ID: mdl-37695098

ABSTRACT

BACKGROUND AND PURPOSE: To assess the feasibility of 3-dimensional stereotactic surface projection (3D-SSP) as applied to arterial spin labeling (ASL) in a clinical pilot study. METHODS: A retrospective sample of 10 consecutive patients who underwent ASL as part of a clinically indicated MR examination was collected during this pilot study. Five additional subjects with normal cerebral perfusion served as a control group. Following voxel-wise M0-correction, cerebral blood flow (CBF) quantification, and stereotactic anatomic standardization, voxel-wise CBF from an individual's ASL dataset was extracted to a set of predefined surface pixels (3D-SSP). A normal database was created from averaging the extracted CBF datasets of the control group. Patients' datasets were compared individually with the normal database by calculating a Z-score on a pixel-by-pixel basis and were displayed in 3D-SSP views for visual inspection. Independent, two-expert reader assessment, using a 3-point scale, compared standard quantitative CBF images to the 3D-SSP maps. RESULTS: Patterns and severities of regionally reduced CBF were identified, by both independent readers, in the 3D-SSP maps. Reader assessment demonstrated preference for 3D-SSP over traditionally displayed standard quantitative CBF images in three of four evaluated imaging metrics (p = .026, .031, and .013, respectively); 3D-SSP maps were never found to be inferior to the standard quantitative CBF images. CONCLUSIONS: Three-dimensional SSP maps are feasible in a clinical population and enable quantitative data extraction and localization of perfusion abnormalities by means of stereotactic coordinates in a condensed display. The proposed method is a promising approach for interpreting cerebrovascular pathophysiology.


Subject(s)
Arteries , Imaging, Three-Dimensional , Humans , Spin Labels , Pilot Projects , Retrospective Studies , Imaging, Three-Dimensional/methods , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods
20.
J Neurointerv Surg ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37652689

ABSTRACT

In recent years, ultra-high-field magnetic resonance imaging (MRI) applications have been rapidly increasing in both clinical research and practice. Indeed, 7-Tesla (7T) MRI allows improved depiction of smaller structures with high signal-to-noise ratio, and, therefore, may improve lesion visualization, diagnostic capabilities, and thus potentially affect treatment decision-making. Incremental evidence emerging from research over the past two decades has provided a promising prospect of 7T magnetic resonance angiography (MRA) in the evaluation of intracranial vasculature. The ultra-high resolution and excellent image quality of 7T MRA allow us to explore detailed morphological and hemodynamic information, detect subtle pathological changes in early stages, and provide new insights allowing for deeper understanding of pathological mechanisms of various cerebrovascular diseases. However, along with the benefits of ultra-high field strength, some challenges and concerns exist. Despite these, ongoing technical developments and clinical oriented research will facilitate the widespread clinical application of 7T MRA in the near future. In this review article, we summarize technical aspects, clinical applications, and recent advances of 7T MRA in the evaluation of intracranial vascular disease. The aim of this review is to provide a clinical perspective for the potential application of 7T MRA for the assessment of intracranial vascular disease, and to explore possible future research directions implementing this technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...