Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Diseases ; 11(1)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36810535

ABSTRACT

As a part of a systematic study of mosquitoes and associated viruses in Uganda, a virus was isolated from a pool of Mansonia uniformis collected in July 2017, in the Kitgum District of northern Uganda. Sequence analysis determined that the virus is Yata virus (YATAV; Ephemerovirus yata; family Rhabdoviridae). The only previous reported isolation of YATAV was in 1969 in Birao, Central African Republic, also from Ma. uniformis mosquitoes. The current sequence is over 99% identical at the nucleotide level to the original isolate, indicating a high level of YATAV genomic stability.

2.
Am J Trop Med Hyg ; 108(1): 161-164, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36410326

ABSTRACT

After confirmation of two human cases of Rift Valley fever (RVF) in March 2016 in the Kabale district of Uganda, an entomological investigation was conducted with a focus on mosquito species composition and abundance of known and potential mosquito vector species, and virus testing to identify species most likely involved in Rift Valley fever virus transmission. This information could be used to forecast risk and facilitate improvement of prevention and response tools for use in preventing or controlling future outbreaks. From these collections, two virus isolates were obtained, one each from a pool of Aedes tricholabis and Ae. gibbinsi. Next-generation sequencing identified both isolates as Wesselsbron virus, family Flaviviridae, a neglected arbovirus of economic importance. These are the first reported Wesselsbron virus isolates from Uganda since 1966.


Subject(s)
Aedes , Flavivirus , Rift Valley Fever , Rift Valley fever virus , Animals , Humans , Phylogeny , Uganda/epidemiology , Disease Outbreaks/prevention & control
3.
Diseases ; 10(4)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36547207

ABSTRACT

The reservoir for zoonotic o'nyong-nyong virus (ONNV) has remained unknown since this virus was first recognized in Uganda in 1959. Building on existing evidence for mosquito blood-feeding on various frugivorous bat species in Uganda, and seroprevalence for arboviruses among bats in Uganda, we sought to assess if serum samples collected from bats in Uganda demonstrated evidence of exposure to ONNV or the closely related zoonotic chikungunya virus (CHIKV). In total, 652 serum samples collected from six bat species were tested by plaque reduction neutralization test (PRNT) for neutralizing antibodies against ONNV and CHIKV. Forty out of 303 (13.2%) Egyptian rousettes from Maramagambo Forest and 1/13 (8%) little free-tailed bats from Banga Nakiwogo, Entebbe contained neutralizing antibodies against ONNV. In addition, 2/303 (0.7%) of these Egyptian rousettes contained neutralizing antibodies to CHIKV, and 8/303 (2.6%) contained neutralizing antibodies that were nonspecifically reactive to alphaviruses. These data support the interepidemic circulation of ONNV and CHIKV in Uganda, although Egyptian rousette bats are unlikely to serve as reservoirs for these viruses given the inconsistent occurrence of antibody-positive bats.

4.
Microbiol Resour Announc ; 11(12): e0069222, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36326501

ABSTRACT

Despite causing numerous large outbreaks in the 20th century, few isolates of o'nyong nyong virus (ONNV) have been fully sequenced. Here, we report the complete genome sequence of an isolate of ONNV obtained from a febrile patient in northwest Uganda in 2017, designated ONNV UVRI0804.

5.
PLoS Negl Trop Dis ; 16(9): e0010770, 2022 09.
Article in English | MEDLINE | ID: mdl-36067233

ABSTRACT

BACKGROUND: Early detection of human yellow fever (YF) infection in YF-endemic regions is critical to timely outbreak mitigation. African National Laboratories chiefly rely on serological assays that require confirmation at Regional Reference Laboratories, thus delaying results, which themselves are not always definitive often due to antibody cross-reactivity. A positive molecular test result is confirmatory for YF; therefore, a standardized YF molecular assay would facilitate immediate confirmation at National Laboratories. The WHO-coordinated global Eliminate Yellow Fever Epidemics Laboratory Technical Working Group sought to independently evaluate the quality and performance of commercial YF molecular assays relevant to use in countries with endemic YF, in the absence of stringent premarket assessments. This report details a limited laboratory WHO-coordinated evaluation of the altona Diagnostics RealStar Yellow Fever Virus RT-PCR kit 1.0. METHODOLOGY AND PRINCIPAL FINDINGS: Specific objectives were to assess the assay's ability to detect YF virus strains in human serum from YF-endemic regions, determine the potential for interference and cross-reactions, verify the performance claims as stated by the manufacturer, and assess usability. RNA extracted from normal human serum spiked with YF virus showed the assay to be precise with minimal lot-to-lot variation. The 95% limit of detection calculated was approximately 1,245 RNA copies/ml [95% confidence interval 497 to 1,640 copies/ml]. Positive results were obtained with spatially and temporally diverse YF strains. The assay was specific for YF virus, was not subject to endogenous or exogenous interferents, and was clinically sensitive and specific. A review of operational characteristics revealed that a positivity cutoff was not defined in the instructions for use, but otherwise the assay was user-friendly. CONCLUSIONS AND SIGNIFICANCE: The RealStar Yellow Fever Virus RT-PCR kit 1.0 has performance characteristics consistent with the manufacturer's claims and is suitable for use in YF-endemic regions. Its use is expected to decrease YF outbreak detection times and be instrumental in saving lives.


Subject(s)
Yellow Fever Vaccine , Yellow Fever , Humans , Laboratories , RNA , Reverse Transcriptase Polymerase Chain Reaction , Yellow Fever/epidemiology , Yellow fever virus/genetics
6.
PLoS Negl Trop Dis ; 16(6): e0010515, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35653353

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pntd.0008765.].

7.
Pan Afr Med J ; 38: 402, 2021.
Article in English | MEDLINE | ID: mdl-34381546

ABSTRACT

INTRODUCTION: accurate and timely laboratory diagnosis of yellow fever (YF) is critical to the Eliminate Yellow Fever Epidemics (EYE) strategy. Gavi, the Vaccine Alliance recognized the need to support and build capacity in the national and regional laboratories in the Global YF Laboratory Network (GYFLN) as part of this strategy. METHODS: to better understand current capacity, gaps and needs of the GYFLN laboratories in Africa, assessments were carried out in national and regional reference laboratories in the 25 African countries at high risk for YF outbreaks that were eligible for new financial support from Gavi. RESULTS: the assessments found that the GYFLN in Africa has high capacity but 21% of specimens were not tested due to lack of testing kits or reagents and approximately 50% of presumptive YF cases were not confirmed at the regional reference laboratory due to problems with shipping. CONCLUSION: the laboratory assessments helped to document the baseline capacities of these laboratories prior to Gavi funding to support strengthening YF laboratories.


Subject(s)
Disease Outbreaks , Laboratories/statistics & numerical data , Yellow Fever/diagnosis , Africa/epidemiology , Capacity Building , Epidemics , Humans , Yellow Fever/epidemiology
8.
Sci Rep ; 11(1): 8370, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863991

ABSTRACT

Serological cross-reactivity among flaviviruses makes determining the prior arbovirus exposure of animals challenging in areas where multiple flavivirus strains are circulating. We hypothesized that prior infection with ZIKV could be confirmed through the presence of subgenomic flavivirus RNA (sfRNA) of the 3' untranslated region (UTR), which persists in tissues due to XRN-1 stalling during RNA decay. We amplified ZIKV sfRNA but not NS5 from three experimentally-infected Jamaican fruit bats, supporting the hypothesis of sfRNA tissue persistence. Applying this approach to 198 field samples from Uganda, we confirmed presence of ZIKV sfRNA, but not NS5, in four bats representing three species: Eidolon helvum (n = 2), Epomophorus labiatus (n = 1), and Rousettus aegyptiacus (n = 1). Amplified sequence was most closely related to Asian lineage ZIKV. Our results support the use of sfRNA as a means of identifying previous flavivirus infection and describe the first detection of ZIKV RNA in East African bats.


Subject(s)
Cell Lineage , Chiroptera/virology , Genome, Viral , RNA, Viral/genetics , Virus Replication , Zika Virus Infection/diagnosis , Zika Virus/isolation & purification , Animals , Chiroptera/genetics , Chlorocebus aethiops , Female , Host-Pathogen Interactions , Male , RNA Stability , Uganda/epidemiology , Vero Cells , Zika Virus Infection/epidemiology , Zika Virus Infection/virology
9.
PLoS Negl Trop Dis ; 14(10): e0008765, 2020 10.
Article in English | MEDLINE | ID: mdl-33044987

ABSTRACT

Usutu virus (USUV; Flavivirus), a close phylogenetic and ecological relative of West Nile virus, is a zoonotic virus that can cause neuroinvasive disease in humans. USUV is maintained in an enzootic cycle between Culex mosquitoes and birds. Since the first isolation in 1959 in South Africa, USUV has spread throughout Africa and Europe. Reported human cases have increased over the last few decades, primarily in Europe, with symptoms ranging from mild febrile illness to severe neurological effects. In this study, we investigated whether USUV has become more pathogenic during emergence in Europe. Interferon α/ß receptor knockout (Ifnar1-/-) mice were inoculated with recent USUV isolates from Africa and Europe, as well as the historic 1959 South African strain. The three tested African strains and one European strain from Spain caused 100% mortality in inoculated mice, with similar survival times and histopathology in tissues. Unexpectedly, a European strain from the Netherlands caused only 12% mortality and significantly less histopathology in tissues from mice compared to mice inoculated with the other strains. Viremia was highest in mice inoculated with the recent African strains and lowest in mice inoculated with the Netherlands strain. Based on phylogenetics, the USUV isolates from Spain and the Netherlands were derived from separate introductions into Europe, suggesting that disease outcomes may differ for USUV strains circulating in Europe. These results also suggest that while more human USUV disease cases have been reported in Europe recently, circulating African USUV strains are still a potential major health concern.


Subject(s)
Flavivirus Infections/virology , Flavivirus/isolation & purification , Flavivirus/pathogenicity , Animals , Culex/virology , Europe , Female , Flavivirus/classification , Flavivirus/genetics , Flavivirus Infections/mortality , Flavivirus Infections/pathology , Flavivirus Infections/transmission , Humans , Male , Mice , Mice, Inbred C57BL , Netherlands , Phylogeny , South Africa , Spain , Virulence
10.
Article in English | MEDLINE | ID: mdl-31798935

ABSTRACT

Arboviruses are (re-) emerging viruses that cause significant morbidity globally. Clinical manifestations usually consist of a non-specific febrile illness that may be accompanied by rash, arthralgia and arthritis and/or with neurological or hemorrhagic syndromes. The broad range of differential diagnoses of other infectious and non-infectious etiologies presents a challenge for clinicians. While knowledge of the geographic distribution of pathogens and the current epidemiological situation, incubation periods, exposure risk factors and vaccination history can help guide the diagnostic approach, the non-specific and variable clinical presentation can delay final diagnosis. This case report summarizes the laboratory-based findings of three travel-related cases of arbovirus infections in Uganda. These include a patient from Bangladesh with chikungunya virus infection and two cases of dengue fever from Ethiopia. Early detection of travel-imported cases by public health laboratories is important to reduce the risk of localized outbreaks of arboviruses such as dengue virus and chikungunya virus. Because of the global public health importance and the continued risk of (re-) emerging arbovirus infections, specific recommendations following diagnosis by clinicians should include obtaining travel histories from persons with arbovirus-compatible illness and include differential diagnoses when appropriate.

11.
Viruses ; 11(3)2019 03 02.
Article in English | MEDLINE | ID: mdl-30832334

ABSTRACT

While serological and virological evidence documents the exposure of bats to medically-important arboviruses, their role as reservoirs or amplifying hosts is less well-characterized. We describe a novel orbivirus (Reoviridae:Orbivirus) isolated from an Egyptian fruit bat (Rousettus aegyptiacus leachii) trapped in 2013 in Uganda and named Bukakata orbivirus. This is the fifth orbivirus isolated from a bat, however genetic information had previously only been available for one bat-associated orbivirus. We performed whole-genome sequencing on Bukakata orbivirus and three other bat-associated orbiviruses (Fomede, Ife, and Japanaut) to assess their phylogenetic relationship within the genus Orbivirus and develop hypotheses regarding potential arthropod vectors. Replication kinetics were assessed for Bukakata orbivirus in three different vertebrate cell lines. Lastly, qRT-PCR and nested PCR were used to determine the prevalence of Bukakata orbivirus RNA in archived samples from three populations of Egyptian fruit bats and one population of cave-associated soft ticks in Uganda. Complete coding sequences were obtained for all ten segments of Fomede, Ife, and Japanaut orbiviruses and for nine of the ten segments for Bukakata orbivirus. Phylogenetic analysis placed Bukakata and Fomede in the tick-borne orbivirus clade and Ife and Japanaut within the Culicoides/phlebotomine sandfly orbivirus clade. Further, Bukakata and Fomede appear to be serotypes of the Chobar Gorge virus species. Bukakata orbivirus replicated to high titers (106⁻107 PFU/mL) in Vero, BHK-21 [C-13], and R06E (Egyptian fruit bat) cells. Preliminary screening of archived bat and tick samples do not support Bukakata orbivirus presence in these collections, however additional testing is warranted given the phylogenetic associations observed. This study provided complete coding sequence for several bat-associated orbiviruses and in vitro characterization of a bat-associated orbivirus. Our results indicate that bats may play an important role in the epidemiology of viruses in the genus Orbivirus and further investigation is warranted into vector-host associations and ongoing surveillance efforts.


Subject(s)
Chiroptera/virology , Disease Reservoirs/virology , Orbivirus/classification , Virus Replication , Animals , Cell Line , Chlorocebus aethiops , Genome, Viral , Open Reading Frames , Orbivirus/isolation & purification , Orbivirus/physiology , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Vero Cells , Viral Proteins/genetics , Whole Genome Sequencing
12.
Health Secur ; 16(S1): S76-S86, 2018.
Article in English | MEDLINE | ID: mdl-30480504

ABSTRACT

Global health security depends on effective surveillance for infectious diseases. In Uganda, resources are inadequate to support collection and reporting of data necessary for an effective and responsive surveillance system. We used a cross-cutting approach to improve surveillance and laboratory capacity in Uganda by leveraging an existing pediatric inpatient malaria sentinel surveillance system to collect data on expanded causes of illness, facilitate development of real-time surveillance, and provide data on antimicrobial resistance. Capacity for blood culture collection was established, along with options for serologic testing for select zoonotic conditions, including arboviral infection, brucellosis, and leptospirosis. Detailed demographic, clinical, and laboratory data for all admissions were captured through a web-based system accessible at participating hospitals, laboratories, and the Uganda Public Health Emergency Operations Center. Between July 2016 and December 2017, the expanded system was activated in pediatric wards of 6 regional government hospitals. During that time, patient data were collected from 30,500 pediatric admissions, half of whom were febrile but lacked evidence of malaria. More than 5,000 blood cultures were performed; 4% yielded bacterial pathogens, and another 4% yielded likely contaminants. Several WHO antimicrobial resistance priority pathogens were identified, some with multidrug-resistant phenotypes, including Acinetobacter spp., Citrobacter spp., Escherichia coli, Staphylococcus aureus, and typhoidal and nontyphoidal Salmonella spp. Leptospirosis and arboviral infections (alphaviruses and flaviviruses) were documented. The lessons learned and early results from the development of this multisectoral surveillance system provide the knowledge, infrastructure, and workforce capacity to serve as a foundation to enhance the capacity to detect, report, and rapidly respond to wide-ranging public health concerns in Uganda.


Subject(s)
Capacity Building/methods , Global Health , Laboratories/standards , Population Surveillance/methods , Security Measures , Child , Communicable Diseases/epidemiology , Data Collection/methods , Hospitals , Humans , Pediatrics , Public Health , Uganda/epidemiology
13.
J Gen Virol ; 99(9): 1248-1252, 2018 09.
Article in English | MEDLINE | ID: mdl-29975185

ABSTRACT

Zika virus (ZIKV), transmitted by Aedes species mosquitoes, was first isolated in Uganda in 1947. From February 2014 to October 2017, the Uganda Virus Research Institute, in collaboration with the US Centers for Diseases Control and Prevention, conducted arbovirus surveillance in acute febrile illness (AFI) patients at St Francis hospital in Nkonkonjeru. Three hundred and eighty-four serum samples were collected and tested for IgM antibodies to yellow fever virus (YFV), West Nile virus (WNV), dengue virus (DENV), chikungunya virus (CHIKV) and ZIKV. Of the 384 samples, 5 were positive for ZIKV IgM. Of these five, three were confirmed by plaque reduction neutralization test (PRNT) to be ZIKV infections. Of the remaining two, one was determined to be a non-specific flavivirus infection and one was confirmed to be alphavirus-positive by reverse transcriptase polymerase chain reaction (RT-PCR). This study provides the first evidence of laboratory-confirmed ZIKV infection in Uganda in five decades, and emphasizes the need to enhance sentinel surveillance.


Subject(s)
Hospitals , Sentinel Surveillance , Zika Virus Infection/epidemiology , Zika Virus/isolation & purification , Humans , Uganda/epidemiology
14.
Emerg Infect Dis ; 24(8)2018 08.
Article in English | MEDLINE | ID: mdl-29798746

ABSTRACT

In April 2016, a yellow fever outbreak was detected in Uganda. Removal of contaminating ribosomal RNA in a clinical sample improved the sensitivity of next-generation sequencing. Molecular analyses determined the Uganda yellow fever outbreak was distinct from the concurrent yellow fever outbreak in Angola, improving our understanding of yellow fever epidemiology.


Subject(s)
Phylogeny , Yellow Fever/epidemiology , Yellow Fever/virology , Yellow fever virus/genetics , Humans , RNA, Viral/genetics , Uganda/epidemiology
15.
Am J Trop Med Hyg ; 99(1): 11-16, 2018 07.
Article in English | MEDLINE | ID: mdl-29692303

ABSTRACT

The International Committee on Taxonomy of Viruses (ICTV) has implemented numerous changes to the taxonomic classification of bunyaviruses over the years. Whereas most changes have been justified and necessary because of the need to accommodate newly discovered and unclassified viruses, other changes are a cause of concern, especially the decision to demote scores of formerly recognized species to essentially strains of newly designated species. This practice was first described in the seventh taxonomy report of the ICTV and has continued in all subsequent reports. In some instances, viruses that share less than 75% nucleotide sequence identity across their genomes, produce vastly different clinical presentations, possess distinct vector and host associations, have different biosafety recommendations, and occur in nonoverlapping geographic regions are classified as strains of the same species. Complicating the matter is the fact that virus strains have been completely eliminated from ICTV reports; thus, critically important information on virus identities and their associated biological and epidemiological features cannot be readily related to the ICTV classification. Here, we summarize the current status of bunyavirus taxonomy and discuss the adverse consequences associated with the reclassification and resulting omission of numerous viruses of public health importance from ICTV reports. As members of the American Committee on Arthropod-borne Viruses, we encourage the ICTV Bunyavirus Study Group to reconsider their stance on bunyavirus taxonomy, to revise the criteria currently used for species demarcation, and to list additional strains of public and veterinary importance.


Subject(s)
Bunyaviridae Infections/virology , Bunyaviridae/classification , Genome, Viral , Mosquito Vectors/virology , Phylogeny , Bunyaviridae/genetics , Bunyaviridae/pathogenicity , Bunyaviridae Infections/diagnosis , Guidelines as Topic , Humans , International Agencies , Species Specificity , Terminology as Topic
16.
J Clin Microbiol ; 56(6)2018 06.
Article in English | MEDLINE | ID: mdl-29643198

ABSTRACT

Yellow fever (YF) is a reemerging public health threat, with frequent outbreaks prompting large vaccination campaigns in regions of endemicity in Africa and South America. Specific detection of vaccine-related adverse events is resource-intensive, time-consuming, and difficult to achieve during an outbreak. To address this, we have developed a highly transferable rapid yellow fever virus (YFV) vaccine-specific real-time reverse transcription-PCR (RT-PCR) assay that distinguishes vaccine from wild-type lineages. The assay utilizes a specific hydrolysis probe that includes locked nucleic acids to enhance specific discrimination of the YFV17D vaccine strain genome. Promisingly, sensitivity and specificity analyses reveal this assay to be highly specific to vaccine strain(s) when tested on clinical samples and YFV cell culture isolates of global origin. Taken together, our data suggest the utility of this assay for use in laboratories of varied capacity for the identification and differentiation of vaccine-related adverse events from wild-type infections of both African and South American origin.


Subject(s)
Real-Time Polymerase Chain Reaction/methods , Yellow Fever Vaccine/adverse effects , Yellow Fever/diagnosis , Yellow fever virus/genetics , Cell Culture Techniques , DNA Primers/genetics , Genome, Viral , Humans , Oligonucleotides/genetics , Sensitivity and Specificity , Yellow Fever/blood , Yellow fever virus/isolation & purification
17.
Infect Ecol Epidemiol ; 8(1): 1439215, 2018.
Article in English | MEDLINE | ID: mdl-29511459

ABSTRACT

Introduction: A number of arboviruses have previously been isolated from naturally-infected East African bats, however the role of bats in arbovirus maintenance is poorly understood. The aim of this study was to investigate the exposure history of Ugandan bats to a panel of arboviruses. Materials and methods: Insectivorous and fruit bats were captured from multiple locations throughout Uganda during 2009 and 2011-2013. All serum samples were tested for neutralizing antibodies against West Nile virus (WNV), yellow fever virus (YFV), dengue 2 virus (DENV-2), Zika virus (ZIKV), Babanki virus (BBKV), and Rift Valley fever virus (RVFV) by plaque reduction neutralization test (PRNT). Sera from up to 626 bats were screened for antibodies against each virus. Results and Discussion: Key findings include the presence of neutralizing antibodies against RVFV in 5/52 (9.6%) of little epauletted fruit bats (Epomophorus labiatus) captured from Kawuku and 3/54 (5.6%) Egyptian rousette bats from Kasokero cave. Antibodies reactive to flaviviruses were widespread across bat taxa and sampling locations. Conclusion: The data presented demonstrate the widespread exposure of bats in Uganda to arboviruses, and highlight particular virus-bat associations that warrant further investigation.

18.
J Clin Microbiol ; 56(1)2018 01.
Article in English | MEDLINE | ID: mdl-29093104

ABSTRACT

Cross-reactivity within flavivirus antibody assays, produced by shared epitopes in the envelope proteins, can complicate the serological diagnosis of Zika virus (ZIKAV) infection. We assessed the utility of the plaque reduction neutralization test (PRNT) to confirm recent ZIKAV infections and rule out misleading positive immunoglobulin M (IgM) results in areas with various levels of past dengue virus (DENV) infection incidence. We reviewed PRNT results of sera collected for diagnosis of ZIKAV infection from 1 January through 31 August 2016 with positive ZIKAV IgM results, and ZIKAV and DENV PRNTs were performed. PRNT result interpretations included ZIKAV, unspecified flavivirus, DENV infection, or negative. For this analysis, ZIKAV IgM was considered false positive for samples interpreted as a DENV infection or negative. In U.S. states, 208 (27%) of 759 IgM-positive results were confirmed to be ZIKAV compared to 11 (21%) of 52 in the U.S. Virgin Islands (USVI), 15 (15%) of 103 in American Samoa, and 13 (11%) of 123 in Puerto Rico. In American Samoa and Puerto Rico, more than 80% of IgM-positive results were unspecified flavivirus infections. The false-positivity rate was 27% in U.S. states, 18% in the USVI, 2% in American Samoa, and 6% in Puerto Rico. In U.S. states, the PRNT provided a virus-specific diagnosis or ruled out infection in the majority of IgM-positive samples. Almost a third of ZIKAV IgM-positive results were not confirmed; therefore, providers and patients must understand that IgM results are preliminary. In territories with historically higher rates of DENV transmission, the PRNT usually could not differentiate between ZIKAV and DENV infections.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/epidemiology , Immunoglobulin M/blood , Zika Virus Infection/diagnosis , Zika Virus/immunology , American Samoa/epidemiology , Cross Reactions , False Positive Reactions , Female , Flavivirus/immunology , Humans , Incidence , Male , Neutralization Tests , Puerto Rico/epidemiology , United States/epidemiology , United States Virgin Islands/epidemiology , Zika Virus Infection/epidemiology , Zika Virus Infection/virology
19.
J Med Entomol ; 54(5): 1403-1409, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28874015

ABSTRACT

A large number of arthropod-borne viruses are endemic to East Africa. As a part of the process of undertaking a systematic characterization of the mosquito fauna of Uganda, we examined mosquitoes collected from 2008 through early 2012 for known and novel viruses. In all, 8,288 mosquito pools containing 157,554 mosquitoes were tested. Twenty-nine isolations of 11 different viruses were made from mosquitoes of nine distinct species and from pools identified only to genus Culex. Identified viruses were from family Togaviridae, alphaviruses Sindbis and Babanki viruses; family Rhabdoviridae, hapaviruses Mossuril and Kamese viruses; family Flaviviridae, flaviviruses West Nile and Usutu viruses; family Phenuiviridae, phlebovirus Arumowot virus; and family Peribunyaviridae, orthobunyaviruses Witwatersrand, Pongola, and Germiston viruses. In addition, a novel orthobunyavirus, provisionally named Mburo virus, was isolated from Coquillettidia metallica (Theobald). This is the first report of Babanki, Arumowot, and Mossuril virus isolation from Uganda.


Subject(s)
Arboviruses/isolation & purification , Culicidae/virology , Animals , Arboviruses/classification , Culicidae/classification , Female , Male , Uganda
20.
PLoS Negl Trop Dis ; 11(8): e0005869, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28854206

ABSTRACT

In mid-2015, Salvador, Brazil, reported an outbreak of Guillain-Barré syndrome (GBS), coinciding with the introduction and spread of Zika virus (ZIKV). We found that GBS incidence during April-July 2015 among those ≥12 years of age was 5.6 cases/100,000 population/year and increased markedly with increasing age to 14.7 among those ≥60 years of age. We conducted interviews with 41 case-patients and 85 neighborhood controls and found no differences in demographics or exposures prior to GBS-symptom onset. A higher proportion of case-patients (83%) compared to controls (21%) reported an antecedent illness (OR 18.1, CI 6.9-47.5), most commonly characterized by rash, headache, fever, and myalgias, within a median of 8 days prior to GBS onset. Our investigation confirmed an outbreak of GBS, particularly in older adults, that was strongly associated with Zika-like illness and geo-temporally associated with ZIKV transmission, suggesting that ZIKV may result in severe neurologic complications.


Subject(s)
Disease Outbreaks , Guillain-Barre Syndrome/epidemiology , Zika Virus Infection/complications , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Brazil/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...