Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 34(8): 1429-1438, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37486977

ABSTRACT

Peptide nucleic acids and their conjugates to peptides can self-assemble and generate complex architectures. In this work, we explored the self-assembly of PNA dimers conjugated to the dipeptide WW. Our studies suggest that the indole ring of tryptophan promotes aggregation of the conjugates. The onset of fluorescence is observed upon self-assembly. The structure of self-assembled WWgc is concentration-dependent, being spherical at low concentrations and fibrous at high concentrations. As suggested by molecular modeling studies, fibers are stabilized by stacking interactions between tryptophans and Watson-Crick hydrogen bonds between nucleobases.


Subject(s)
Peptide Nucleic Acids , Tryptophan , Peptide Nucleic Acids/chemistry , Dipeptides/chemistry , Peptides , Models, Molecular
2.
Chemistry ; 28(37): e202200693, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35474351

ABSTRACT

Self-assembly of biomolecules such as peptides, nucleic acids or their analogues affords supramolecular objects, exhibiting structures and physical properties dependent on the amino-acid or nucleobase composition. Conjugation of the peptide diphenylalanine (FF) to peptide nucleic acids triggers formation of self-assembled structures, mainly stabilized by interactions between FF. In this work we report formation of homogeneous chiral fibers upon self-assembly of the hybrid composed of the tetraphenylalanine peptide (4F) conjugated to the PNA dimer adenine-thymine (at). In this case nucleobases seem to play a key role in determining the morphology and chirality of the fibers. When the PNA "at" is replaced by guanine-cytosine dimer "gc", disordered structures are observed. Spectroscopic characterization of the self-assembled hybrids, along with AFM and SEM studies is reported. Finally, a structural model consistent with the experimental evidence has also been obtained, showing how the building blocks of 4Fat arrange to give helical fibers.


Subject(s)
Nanostructures , Peptide Nucleic Acids , Nanostructures/chemistry , Peptide Nucleic Acids/chemistry , Peptides/chemistry , Phenylalanine/chemistry , Polymers , Thymine
SELECTION OF CITATIONS
SEARCH DETAIL
...