Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Stem Cells Dev ; 32(13-14): 387-397, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37166357

ABSTRACT

Transplantation of human induced pluripotent stem cell-derived dopaminergic (iPSC-DA) neurons is a promising therapeutic strategy for Parkinson's disease (PD). To assess optimal cell characteristics and reproducibility, we evaluated the efficacy of iPSC-DA neuron precursors from two individuals with sporadic PD by transplantation into a hemiparkinsonian rat model after differentiation for either 18 (d18) or 25 days (d25). We found similar graft size and dopamine (DA) neuron content in both groups, but only the d18 cells resulted in recovery of motor impairments. In contrast, we report that d25 grafts survived equally as well and produced grafts rich in tyrosine hydroxylase-positive neurons, but were incapable of alleviating any motor deficits. We identified the mechanism of action as the extent of neurite outgrowth into the host brain, with d18 grafts supporting significantly more neurite outgrowth than nonfunctional d25 grafts. RNAseq analysis of the cell preparation suggests that graft efficacy may be enhanced by repression of differentiation-associated genes by REST, defining the optimal predifferentiation state for transplantation. This study demonstrates for the first time that DA neuron grafts can survive well in vivo while completely lacking the capacity to induce recovery from motor dysfunction. In contrast to other recent studies, we demonstrate that neurite outgrowth is the key factor determining graft efficacy and our gene expression profiling revealed characteristics of the cells that may predict their efficacy. These data have implication for the generation of DA neuron grafts for clinical application.


Subject(s)
Dopaminergic Neurons , Induced Pluripotent Stem Cells , Humans , Rats , Animals , Transcriptome , Reproducibility of Results , Cell Differentiation/physiology , Neuronal Outgrowth
2.
Physiol Genomics ; 55(6): 259-274, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37184227

ABSTRACT

Cigarette smoking increases the risk of acute respiratory distress syndrome (ARDS; Calfee CS, Matthay MA, Eisner MD, Benowitz N, Call M, Pittet J-F, Cohen MJ. Am J Respir Crit Care Med 183: 1660-1665, 2011; Calfee CS, Matthay MA, Kangelaris KN, Siew ED, Janz DR, Bernard GR, May AK, Jacob P, Havel C, Benowitz NL, Ware LB. Crit Care Med 43: 1790-1797, 2015; Toy P, Gajic O, Bacchetti P, Looney MR, Gropper MA, Hubmayr R, Lowell CA, Norris PJ, Murphy EL, Weiskopf RB, Wilson G, Koenigsberg M, Lee D, Schuller R, Wu P, Grimes B, Gandhi MJ, Winters JL, Mair D, Hirschler N, Sanchez Rosen R, Matthay MA, TRALI Study Group. Blood 119: 1757-1767, 2012) and causes emphysema. However, it is not known why some individuals develop disease, whereas others do not. We found that smoke-exposed AKR mice were more susceptible to lipopolysaccharides (LPS)-induced acute lung injury (ALI) than C57BL/6 mice (Sakhatskyy P, Wang Z, Borgas D, Lomas-Neira J, Chen Y, Ayala A, Rounds S, Lu Q. Am J Physiol Lung Cell Mol Physiol 312: L56-L67, 2017); thus, we investigated strain-dependent lung transcriptomic responses to cigarette smoke (CS). Eight-week-old male AKR and C57BL/6 mice were exposed to 3 wk of room air (RA) or cigarette smoke (CS) for 6 h/day, 4 days/wk, followed by intratracheal instillation of LPS or normal saline (NS) and microarray analysis of lung homogenate gene expression. Other groups of AKR and C57 mice were exposed to RA or CS for 6 wk, followed by evaluation of static lung compliance and tissue elastance, morphometric evaluation for emphysema, or microarray analysis of lung gene expression. Transcriptomic analyses of lung homogenates show distinct strain-dependent lung transcriptional responses to CS and LPS, with AKR mice having larger numbers of genes affected than similarly treated C57 mice, congruent with strain differences in physiologic and inflammatory parameters previously observed in LPS-induced ALI after CS priming. These results suggest that genetic differences may underlie differing susceptibility of smokers to ARDS and emphysema. Strain-based differences in gene transcription contribute to CS and LPS-induced lung injury. There may be a genetic basis for smoking-related lung injury. Clinicians should consider cigarette smoke exposure as a risk factor for ALI and ARDS.NEW & NOTEWORTHY We demonstrate that transcriptomes expressed in lung homogenates also differ between the mouse strains and after acute (3 wk) exposure of animals to cigarette smoke (CS) and/or to lipopolysaccharide. Mouse strains also differed in physiologic, pathologic, and transcriptomic, responses to more prolonged (6 wk) exposure to CS. These data support a genetic basis for enhanced susceptibility to acute and chronic lung injury among humans who smoke cigarettes.


Subject(s)
Acute Lung Injury , Cigarette Smoking , Emphysema , Respiratory Distress Syndrome , Humans , Male , Mice , Animals , Lipopolysaccharides/pharmacology , Transcriptome , Mice, Inbred AKR , Mice, Inbred C57BL , Lung/pathology , Acute Lung Injury/pathology , Respiratory Distress Syndrome/genetics , Emphysema/metabolism , Emphysema/pathology , Disease Models, Animal
3.
Immun Ageing ; 19(1): 27, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35650631

ABSTRACT

BACKGROUND: Influenza causes a serious infection in older individuals who are at the highest risk for mortality from this virus. Changes in the immune system with age are well known. This study used transcriptomic analysis to evaluate how aging specifically affects the functional host response to influenza in the lung. Adult (12-16 weeks) and aged (72-76 weeks) mice were infected with influenza and lungs were processed for RNA analysis. RESULTS: Older mice demonstrated a delayed anti-viral response on the level of transcription compared to adults, similar to the immunologic responses measured in prior work. The transcriptional differences, however, were evident days before observable differences in the protein responses described previously. The transcriptome response to influenza in aged mice was dominated by immunoglobulin genes and B cell markers compared to adult animals, suggesting immune dysregulation. Despite these differences, both groups of mice had highly similar transcriptional responses involving non-immune genes one day after inoculation and T cell genes during resolution. CONCLUSIONS: These results define a delayed and dysregulated immune response in the lungs of aged mice infected with influenza. The findings implicate B cells and immunoglobulins as markers or mechanisms of immune aging. In addition to discovering new therapeutic targets, the findings underscore the value of transcription studies and network analysis to characterize complex biological processes, and serve as a model to analyze the susceptibility of the elderly to infectious agents.

4.
Science ; 373(6560): 1200-1201, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516801

ABSTRACT

Questions over mitochondrial replacement suggest a role for mitochondrial DNA editing.


Subject(s)
DNA, Mitochondrial/genetics , Gene Editing , Genetic Therapy/methods , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Mitochondrial Replacement Therapy , Animals , Humans
5.
PLoS Genet ; 17(3): e1008887, 2021 03.
Article in English | MEDLINE | ID: mdl-33735180

ABSTRACT

The winged insects of the order Diptera are colloquially named for their most recognizable phenotype: flight. These insects rely on flight for a number of important life history traits, such as dispersal, foraging, and courtship. Despite the importance of flight, relatively little is known about the genetic architecture of flight performance. Accordingly, we sought to uncover the genetic modifiers of flight using a measure of flies' reaction and response to an abrupt drop in a vertical flight column. We conducted a genome wide association study (GWAS) using 197 of the Drosophila Genetic Reference Panel (DGRP) lines, and identified a combination of additive and marginal variants, epistatic interactions, whole genes, and enrichment across interaction networks. Egfr, a highly pleiotropic developmental gene, was among the most significant additive variants identified. We functionally validated 13 of the additive candidate genes' (Adgf-A/Adgf-A2/CG32181, bru1, CadN, flapper (CG11073), CG15236, flippy (CG9766), CREG, Dscam4, form3, fry, Lasp/CG9692, Pde6, Snoo), and introduce a novel approach to whole gene significance screens: PEGASUS_flies. Additionally, we identified ppk23, an Acid Sensing Ion Channel (ASIC) homolog, as an important hub for epistatic interactions. We propose a model that suggests genetic modifiers of wing and muscle morphology, nervous system development and function, BMP signaling, sexually dimorphic neural wiring, and gene regulation are all important for the observed differences flight performance in a natural population. Additionally, these results represent a snapshot of the genetic modifiers affecting drop-response flight performance in Drosophila, with implications for other insects.


Subject(s)
Drosophila melanogaster/genetics , Drosophila/genetics , Gene Expression Regulation, Developmental , Genetic Variation , Neurogenesis/genetics , Animals , Drosophila/embryology , Drosophila melanogaster/metabolism , Epigenesis, Genetic , Female , Flight, Animal , Genetic Association Studies , Male , Phenotype , Polymorphism, Single Nucleotide
6.
Philos Trans R Soc Lond B Biol Sci ; 375(1790): 20190188, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31787039

ABSTRACT

The mitonuclear genome is the most successful co-evolved mutualism in the history of life on Earth. The cross-talk between the mitochondrial and nuclear genomes has been shaped by conflict and cooperation for more than 1.5 billion years, yet this system has adapted to countless genomic reorganizations by each partner, and done so under changing environments that have placed dramatic biochemical and physiological pressures on evolving lineages. From putative anaerobic origins, mitochondria emerged as the defining aerobic organelle. During this transition, the two genomes resolved rules for sex determination and transmission that made uniparental inheritance the dominant, but not a universal pattern. Mitochondria are much more than energy-producing organelles and play crucial roles in nutrient and stress signalling that can alter how nuclear genes are expressed as phenotypes. All of these interactions are examples of genotype-by-environment (GxE) interactions, gene-by-gene (GxG) interactions (epistasis) or more generally context-dependent effects on the link between genotype and phenotype. We provide evidence from our own studies in Drosophila, and from those of other systems, that mitonuclear interactions-either conflicting or cooperative-are common features of GxE and GxG. We argue that mitonuclear interactions are an important model for how to better understand the pervasive context-dependent effects underlying the architecture of complex phenotypes. Future research in this area should focus on the quantitative genetic concept of effect size to place mitochondrial links to phenotype in a proper context. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.


Subject(s)
Cell Nucleus/genetics , Environment , Epistasis, Genetic , Gene-Environment Interaction , Genotype , Mitochondria/genetics , Phenotype , Animals , Drosophila melanogaster/genetics
7.
BMC Genomics ; 20(1): 691, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31477008

ABSTRACT

BACKGROUND: Mitochondria perform many key roles in their eukaryotic hosts, from integrating signaling pathways through to modulating whole organism phenotypes. The > 1 billion years of nuclear and mitochondrial gene co-evolution has necessitated coordinated expression of gene products from both genomes that maintain mitochondrial, and more generally, eukaryotic cellular function. How mitochondrial DNA (mtDNA) variation modifies host fitness has proved a challenging question but has profound implications for evolutionary and medical genetics. In Drosophila, we have previously shown that recently diverged mtDNA haplotypes within-species can have more impact on organismal phenotypes than older, deeply diverged haplotypes from different species. Here, we tested the effects of mtDNA haplotype variation on gene expression in Drosophila under standardized conditions. Using the Drosophila Genetic Reference Panel (DGRP), we constructed a panel of mitonuclear genotypes that consists of factorial variation in nuclear and mtDNA genomes, with mtDNAs originating in D. melanogaster (2x haplotypes) and D. simulans (2x haplotypes). RESULTS: We show that mtDNA haplotype variation unequivocally alters nuclear gene expression in both females and males, and mitonuclear interactions are pervasive modifying factors for gene expression. There was appreciable overlap between the sexes for mtDNA-sensitive genes, and considerable transcriptional variation attributed to particular mtDNA contrasts. These genes are generally found in low-connectivity gene co-expression networks, occur in gene clusters along chromosomes, are often flanked by non-coding RNA, and are under-represented among housekeeping genes. Finally, we identify the giant (gt) transcription factor motif as a putative regulatory sequence associated with mtDNA-sensitive genes. CONCLUSIONS: There are predictive conditions for nuclear genes that are influenced by mtDNA variation.


Subject(s)
Cell Nucleus/genetics , Drosophila/genetics , Gene Regulatory Networks/genetics , Genome, Mitochondrial/genetics , Amino Acid Motifs/genetics , Animals , Cell Nucleus/metabolism , Drosophila/growth & development , Female , Gene Expression Regulation , Gene Regulatory Networks/physiology , Genes, Essential/genetics , Genes, Essential/physiology , Genetic Variation , Genotype , Haplotypes , Male , Multigene Family , Phenotype , Protein Interaction Maps/genetics , Protein Interaction Maps/physiology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA-Seq , Transcriptome
8.
G3 (Bethesda) ; 9(4): 1175-1188, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30745378

ABSTRACT

Mitochondrial DNA (mtDNA) has been one of the most extensively studied molecules in ecological, evolutionary and clinical genetics. In its early application in evolutionary genetics, mtDNA was assumed to be a selectively neutral marker conferring negligible fitness consequences for its host. However, this dogma has been overturned in recent years due to now extensive evidence for non-neutral evolutionary dynamics. Since mtDNA proteins physically interact with nuclear proteins to provide the mitochondrial machinery for aerobic ATP production, among other cell functions, co-variation of the respective genes is predicted to affect organismal fitness. To test this hypothesis we used an mtDNA-nuclear DNA introgression model in Drosophila melanogaster to test the fitness of genotypes in perturbation-reperturbation population cages and in a non-competitive assay for female fecundity. Genotypes consisted of both conspecific and heterospecific mtDNA-nDNA constructs, with either D. melanogaster or D. simulans mtDNAs on two alternative D. melanogaster nuclear backgrounds, to investigate mitonuclear genetic interactions (G x G effects). We found considerable variation between nuclear genetic backgrounds on the selection of mtDNA haplotypes. In addition, there was variation in the selection on mtDNAs pre- and post- reperturbation, demonstrating overall poor repeatability of selection. There was a strong influence of nuclear background on non-competitive fecundity across all the mtDNA species types. In only one of the four cage types did we see a significant fecundity effect between genotypes that could help explain the respective change in genotype frequency over generational time. We discuss these results in the context of G x G interactions and the possible influence of stochastic environments on mtDNA-nDNA selection.


Subject(s)
DNA, Mitochondrial/chemistry , Drosophila melanogaster/genetics , Animals , DNA, Mitochondrial/physiology , Drosophila melanogaster/physiology , Evolution, Molecular , Female , Fertility , Genotype , Haplotypes , Male
9.
J Hered ; 110(3): 300-309, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30753690

ABSTRACT

Trans-generational maternal effects have been shown to influence a broad range of offspring phenotypes. However, very little is known about paternal trans-generational effects. Here, we tested the trans-generational effects of maternal and paternal age, and their interaction, on daughter and son reproductive fitness in Drosophila melanogaster. We found significant effects of parent ages on offspring reproductive fitness during a 10 day postfertilization period. In daughters, older (45 days old) mothers conferred lower reproductive fitness compared with younger mothers (3 days old). In sons, father's age significantly affected reproductive fitness. The effects of 2 old parents were additive in both sexes and reproductive fitness was lowest when the focal individual had 2 old parents. Interestingly, daughter fertility was sensitive to father's age but son fertility was insensitive to mother's age, suggesting a sexual asymmetry in trans-generational effects. We found the egg-laying dynamics in daughters dramatically shaped this relationship. Daughters with 2 old parents demonstrated an extreme egg dumping behavior on day 1 and laid >2.35× the number of eggs than the other 3 age class treatments. Our study reveals significant trans-generational maternal and paternal age effects on fertility and an association with a novel egg laying behavioral phenotype in Drosophila.


Subject(s)
Drosophila melanogaster/genetics , Fertility/genetics , Reproduction/genetics , Sexual Behavior, Animal , Animal Husbandry , Animals , Female , Genetic Fitness , Genetic Variation , Male , Models, Genetic , Phenotype
10.
IUBMB Life ; 70(12): 1275-1288, 2018 12.
Article in English | MEDLINE | ID: mdl-30394643

ABSTRACT

Mitochondrial function requires the coordinated expression of dozens of gene products from the mitochondrial genome and hundreds from the nuclear genomes. The systems that emerge from these interactions convert the food we eat and the oxygen we breathe into energy for life, while regulating a wide range of other cellular processes. These facts beg the question of whether the gene-by-gene interactions (G x G) that enable mitochondrial function are distinct from the gene-by-environment interactions (G x E) that fuel mitochondrial activity. We examine this question using a Drosophila model of mitonuclear interactions in which experimental combinations of mtDNA and nuclear chromosomes generate pairs of mitonuclear genotypes to test for epistatic interactions (G x G). These mitonuclear genotypes are then exposed to altered dietary or oxygen environments to test for G x E interactions. We use development time to assess dietary effects, and genome wide RNAseq analyses to assess hypoxic effects on transcription, which can be partitioned in to mito, nuclear, and environmental (G x G x E) contributions to these complex traits. We find that mitonuclear epistasis is universal, and that dietary and hypoxic treatments alter the epistatic interactions. We further show that the transcriptional response to alternative mitonuclear interactions has significant overlap with the transcriptional response to alternative oxygen environments. Gene coexpression analyses suggest that these shared genes are more central in networks of gene interactions, implying some functional overlap between epistasis and genotype by environment interactions. These results are discussed in the context of evolutionary fitness, the genetic basis of complex traits, and the challenge of achieving precision in personalized medicine. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1275-1288, 2018.


Subject(s)
Epistasis, Genetic/genetics , Gene-Environment Interaction , Mitochondria/genetics , Multifactorial Inheritance/genetics , Animals , Cell Nucleus/genetics , Drosophila melanogaster/genetics , Genome, Mitochondrial/genetics , Genomics , Genotype , Haplotypes , Humans , Phenotype , Precision Medicine
11.
Mol Biol Evol ; 34(2): 447-466, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28110272

ABSTRACT

Among the major challenges in quantitative genetics and personalized medicine is to understand how gene × gene interactions (G × G: epistasis) and gene × environment interactions (G × E) underlie phenotypic variation. Here, we use the intimate relationship between mitochondria and oxygen availability to dissect the roles of nuclear DNA (nDNA) variation, mitochondrial DNA (mtDNA) variation, hypoxia, and their interactions on gene expression in Drosophila melanogaster. Mitochondria provide an important evolutionary and medical context for understanding G × G and G × E given their central role in integrating cellular signals. We hypothesized that hypoxia would alter mitonuclear communication and gene expression patterns. We show that first order nDNA, mtDNA, and hypoxia effects vary between the sexes, along with mitonuclear epistasis and G × G × E effects. Females were generally more sensitive to genetic and environmental perturbation. While dozens to hundreds of genes are altered by hypoxia in individual genotypes, we found very little overlap among mitonuclear genotypes for genes that were significantly differentially expressed as a consequence of hypoxia; excluding the gene hairy. Oxidative phosphorylation genes were among the most influenced by hypoxia and mtDNA, and exposure to hypoxia increased the signature of mtDNA effects, suggesting retrograde signaling between mtDNA and nDNA. We identified nDNA-encoded genes in the electron transport chain (succinate dehydrogenase) that exhibit female-specific mtDNA effects. Our findings have important implications for personalized medicine, the sex-specific nature of mitonuclear communication, and gene × gene coevolution under variable or changing environments.


Subject(s)
DNA, Mitochondrial/genetics , Drosophila melanogaster/genetics , Hypoxia/genetics , Animals , Biological Evolution , Cell Nucleus/genetics , Drosophila melanogaster/metabolism , Epistasis, Genetic , Female , Gene Expression Regulation , Genotype , Haplotypes , Hypoxia/metabolism , Male , Mitochondria/genetics , Mitochondria/metabolism , Polymorphism, Genetic , Transcriptional Activation , Transcriptome
12.
Genetics ; 204(2): 613-630, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27558138

ABSTRACT

The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Drosophila melanogaster/genetics , Transcriptome/genetics , Animals , Drosophila melanogaster/growth & development , Female , Gene Expression Regulation, Developmental , Genotype , Haplotypes/genetics , Male , Mitochondria/genetics , Sex Characteristics
13.
Genetics ; 203(1): 463-84, 2016 05.
Article in English | MEDLINE | ID: mdl-26966258

ABSTRACT

Mitochondrial (mtDNA) and nuclear genes have to operate in a coordinated manner to maintain organismal function, and the regulation of this homeostasis presents a substantial source of potential epistatic (G × G) interactions. How these interactions shape the fitness landscape is poorly understood. Here we developed a novel mitonuclear epistasis model, using selected strains of the Drosophila Genetic Reference Panel (DGRP) and mitochondrial genomes from within Drosophila melanogaster and D. simulans to test the hypothesis that mtDNA × nDNA interactions influence fitness. In total we built 72 genotypes (12 nuclear backgrounds × 6 mtDNA haplotypes, with 3 from each species) to dissect the relationship between genotype and phenotype. Each genotype was assayed on four food environments. We found considerable variation in several phenotypes, including development time and egg-to-adult viability, and this variation was partitioned into genetic (G), environmental (E), and higher-order (G × G, G × E, and G × G × E) components. Food type had a significant impact on development time and also modified mitonuclear epistases, evidencing a broad spectrum of G × G × E across these genotypes. Nuclear background effects were substantial, followed by mtDNA effects and their G × G interaction. The species of mtDNA haplotype had negligible effects on phenotypic variation and there was no evidence that mtDNA variation has different effects on male and female fitness traits. Our results demonstrate that mitonuclear epistases are context dependent, suggesting the selective pressure acting on mitonuclear genotypes may vary with food environment in a genotype-specific manner.


Subject(s)
Diet , Drosophila melanogaster/genetics , Epistasis, Genetic , Genome, Mitochondrial , Animals , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Female , Gene-Environment Interaction , Genetic Fitness , Male , Models, Genetic
14.
Hum Reprod ; 28(1): 22-32, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23108349

ABSTRACT

STUDY QUESTION: Are there any links between the length measurements of sperm components (head, midpiece, flagellum, total sperm length and the flagellum:head ratio) and data obtained during semen analysis? SUMMARY ANSWER: Both the mean measurement and the variation in the lengths of sperm components are related to characteristics of semen. WHAT IS KNOWN ALREADY: Studies in non-human species have shown that sperm morphology (size and shape) is associated with testes productivity and the consistency of sperm manufacture. However, no study to date has investigated whether there are relationships between the size and consistency of human sperm components, and measures of semen characteristics, including sperm numbers and how well they swim. STUDY DESIGN, SIZE AND DURATION: A retrospective laboratory study of the semen provided by 103 randomly selected men from a 500-man cohort who enrolled into the study between April and December 2006. PARTICIPANTS AND SETTING: Men attending Sheffield Teaching Hospital NHS Foundation Trust for semen analysis as part of investigations for infertility and whose ejaculates were found to contain sperm. MAIN RESULTS AND THE ROLE OF CHANCE: The mean flagellum length and the mean total sperm length were positively associated with semen characteristics measured manually, but were not associated with the sperm swimming speed measured by computer-aided sperm analysis. Ejaculates with a lower variation in the length of sperm components contained sperm that were more likely to be motile. The mean sperm length components accounted for up to 9% of the variance in semen characteristics, while the coefficient of variation accounted for up to 21%. LIMITATIONS AND REASONS FOR CAUTION: The sperm examined were obtained from men undergoing fertility investigations and so these results may not reflect men in the general population. WIDER IMPLICATIONS OF THE FINDINGS: Sperm length measurements may provide a useful insight into testis function and the efficiency of spermatogenesis. STUDY FUNDING AND COMPETING INTERESTS: This study was supported by funding from the University of Sheffield. The authors declare no conflicts of interest.


Subject(s)
Semen Analysis , Spermatozoa/cytology , Spermatozoa/physiology , Adult , Cell Size , Cohort Studies , Hospitals, Teaching , Humans , Image Processing, Computer-Assisted , Linear Models , Male , Microscopy, Video , Models, Biological , Reproducibility of Results , Retrospective Studies , Sperm Count , Sperm Motility , Sperm Tail/physiology , United Kingdom
15.
Asian J Androl ; 15(1): 152-4, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23202700

ABSTRACT

Recent studies investigating possible causes of male subfertility have largely focused on how lifestyle or environmental factors impact on the process of spermatogenesis. Markedly, fewer studies have investigated those risk factors that result in reduced sperm quality, such as poor sperm motility. The speed at which sperm swim is a major predictor of fertility and is extremely variable in human populations. It has been hypothesized that offspring sex may be adaptively manipulated to maximize the offspring's reproductive fitness (e.g., parents with genes for good male fertility traits, such as high sperm speed, would produce primarily sons and fewer daughters because the offspring will inherit advantageous male fertility genes). Conversely, parents with poor male fertility genes would produce primarily daughters. We tested whether there was an association between how fast a man's sperm swam and the sex bias of his siblings in a sample of men attending clinic for fertility investigations with their partner and with a wide range of semen characteristics, including sperm speed. We found that the sex bias of a man's siblings is associated with his sperm speed; men with female-biased siblings had significantly slower sperm (judged using computer-assisted sperm analysis (CASA)) than men from male-biased sibships. This observation suggests family composition is an important factor that needs to be considered in future epidemiological and clinical studies of human fertility.


Subject(s)
Sex Distribution , Siblings , Sperm Motility , Adult , Female , Humans , Infertility, Male , Male
16.
Hum Reprod ; 27(3): 641-51, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22215629

ABSTRACT

BACKGROUND: Sperm motility is regulated by mitochondrial enzymes that are partially encoded by mitochondrial DNA (mtDNA). MtDNA has therefore been suggested as a putative genetic marker of male fertility. However, recent studies in different populations have identified both significant and non-significant associations between mtDNA variation and sperm motility. Here, we tested whether mtDNA variation was associated with sperm motility in a large cohort of men from the UK, to test the robustness of previous studies and the reliability of mtDNA as a marker of poor sperm motility. METHODS: A total of 463 men attending for semen analysis as part of infertility investigations were recruited from a UK laboratory. Sperm motility was measured using both computer-assisted sperm analysis and traditional manual measurements. MtDNA haplogroup and haplotype were determined in 357 and 298 men, respectively, using single nucleotide polymorphism (SNP) markers throughout the mtDNA genome, and compared with sperm motility data. The linkage between the SNP markers, and possible associations between individual SNPs and motility, were also investigated. RESULTS: We found no statistical association between haplogroup or haplotype and sperm motility, regardless of how it was measured (P > 0.05 in all cases). Moreover, individual SNPs which were in linkage disequilibrium and dispersed across the mitochondrial genome, and therefore sensitive to mtDNA variation, were not predictive of sperm motility. CONCLUSIONS: Mitochondrial haplotype is unlikely to be a reliable genetic marker of male factor infertility.


Subject(s)
DNA, Mitochondrial/chemistry , Haplotypes , Sperm Motility/genetics , Adult , Cohort Studies , Genetic Markers , Genetic Variation , Humans , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide , Principal Component Analysis , United Kingdom
17.
BMC Genomics ; 12: 283, 2011 Jun 02.
Article in English | MEDLINE | ID: mdl-21635727

ABSTRACT

BACKGROUND: The recent development of next generation sequencing technologies has made it possible to generate very large amounts of sequence data in species with little or no genome information. Combined with the large phenotypic databases available for wild and non-model species, these data will provide an unprecedented opportunity to "genomicise" ecological model organisms and establish the genetic basis of quantitative traits in natural populations. RESULTS: This paper describes the sequencing, de novo assembly and analysis from the transcriptome of eight tissues of ten wild great tits. Approximately 4.6 million sequences and 1.4 billion bases of DNA were generated and assembled into 95,979 contigs, one third of which aligned with known Taeniopygia guttata (zebra finch) and Gallus gallus (chicken) transcripts. The majority (78%) of the remaining contigs aligned within or very close to regions of the zebra finch genome containing known genes, suggesting that they represented precursor mRNA rather than untranscribed genomic DNA. More than 35,000 single nucleotide polymorphisms and 10,000 microsatellite repeats were identified. Eleven percent of contigs were expressed in every tissue, while twenty one percent of contigs were expressed in only one tissue. The function of those contigs with strong evidence for tissue specific expression and contigs expressed in every tissue was inferred from the gene ontology (GO) terms associated with these contigs; heart and pancreas had the highest number of highly tissue specific GO terms (21.4% and 28.5% respectively). CONCLUSIONS: In summary, the transcriptomic data generated in this study will contribute towards efforts to assemble and annotate the great tit genome, as well as providing the markers required to perform gene mapping studies in wild populations.


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Passeriformes/genetics , Alternative Splicing/genetics , Animals , Chickens/genetics , Contig Mapping , Metagenomics , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics , Time Factors , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...