Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33594366

ABSTRACT

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.

2.
NPJ Vaccines ; 2: 25, 2017.
Article in English | MEDLINE | ID: mdl-29263880

ABSTRACT

Combining immunostimulants in adjuvants can improve the quality of the immune response to vaccines. Here, we report a unique mechanism of molecular and cellular synergy between a TLR4 ligand, 3-O-desacyl-4'-monophosphoryl lipid A (MPL), and a saponin, QS-21, the constituents of the Adjuvant System AS01. AS01 is part of the malaria and herpes zoster vaccine candidates that have demonstrated efficacy in phase III studies. Hours after injection of AS01-adjuvanted vaccine, resident cells, such as NK cells and CD8+ T cells, release IFNγ in the lymph node draining the injection site. This effect results from MPL and QS-21 synergy and is controlled by macrophages, IL-12 and IL-18. Depletion strategies showed that this early IFNγ production was essential for the activation of dendritic cells and the development of Th1 immunity by AS01-adjuvanted vaccine. A similar activation was observed in the lymph node of AS01-injected macaques as well as in the blood of individuals receiving the malaria RTS,S vaccine. This mechanism, previously described for infections, illustrates how adjuvants trigger naturally occurring pathways to improve the efficacy of vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL
...