Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Drug Resist ; 16: 125-142, 2023.
Article in English | MEDLINE | ID: mdl-36636381

ABSTRACT

Introduction: A considerable number of morbidities and fatalities occur worldwide as a result of the multidrug resistant microorganisms that cause a high prevalence of nosocomial bacterial infections. Hence, the current investigation was conducted to evaluate the antibacterial potency of green fabricated silver nanoparticles (AgNPs) against four different nosocomial pathogens. Methods: The flower extract of Hibiscus sabdariffa mediated green fabrication of AgNPs and their physicochemical features were scrutinized using different techniques. Antimicrobial activity of the biogenic AgNPs and their synergistic patterns with fosfomycin antibiotic were evaluated using disk diffusion assay. Results and Discussion: UV spectral analysis affirmed the successful formation of AgNPs through the detection of broad absorption band at 395 and 524 nm, indicating the surface plasmon resonance of the biofabricated AgNPs. In this setting, the biofabricated AgNPs demonstrated average particle size of 58.682 nm according to transmission electron microscope (TEM) micrographs. The detected hydrodynamic diameter was higher than that noticed by TEM analysis, recording 72.30 nm in diameter and this could be attributed to the action of capping agents, which was confirmed by Fourier Transform Infrared (FT-IR) analysis. Disk diffusion assay indicated the antibacterial potency of biogenic AgNPs (50 µg/disk) against Enterobacter cloacae, Methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli strains with relative inhibition zone diameters of 12.82 ± 0.36 mm, 14.54 ± 0.15 mm, 18.35 ± 0.24 mm and 21.69 ± 0.12 mm, respectively. In addition, E. coli was found to be the most susceptible strain to the biogenic AgNPs. However, the highest synergistic pattern of AgNPs-fosfomycin combination was detected against K. pneumonia strain recording relative synergistic percentage of 64.22%. In conclusion, the detected synergistic efficiency of AgNPs and the antibiotic fosfomycin highlight the potential for utilizing this combination in the biofabrication of effective antibacterial agents against nosocomial pathogens.

2.
J Fungi (Basel) ; 8(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35736038

ABSTRACT

Mycoparasites cause serious losses in profitable mushroom farms worldwide. The negative impact of green mold (Trichoderma harzianum) reduces cropping surface and damages basidiomes, limiting production and harvest quality. The goal of the current study was to evaluate new generation fungicides, to devise suitable management strategies against the green mold disease under prevailing agro-climatic conditions. Six non-systemic and five systemic fungitoxicants were evaluated for their efficacy against pathogen, T. harzianum, and host, Agaricus bisporus, under in vitro conditions. Among non-systemic fungicides, chlorothalonil and prochloraz manganese with mean mycelium inhibition of 76.87 and 93.40 percent, respectively, were highly inhibitory against the pathogen. The least inhibition percentage of 7.16 of A. bisporus was exhibited by chlorothalonil. Under in vivo conditions, use of captan 50 WP resulted in a maximum yield of button mushroom of 14.96 kg/qt. So far, systemic fungicides were concerned, carbendazim proved extremely inhibitory to the pathogen (89.22%), with least inhibitory effect on host mycelium (1.56%). However, application of non-systemic fungitoxicants further revealed that fungicide prochloraz manganese 50 WP at 0.1-0.2 percent or chlorothalonil 50 WP at 0.2 percent, exhibited maximum disease control of 89.06-96.30 percent. Moreover, the results of systemic fungitoxicants showed that carbendazim 50 WP or thiophanate methyl 70 WP at 0.1 percent reduced disease to 2.29-3.69 percent, hence exhibiting the disease control of 80.11-87.66 percent. Under in vivo conditions, fungicide myclobutanil at 0.1 percent concentration produced the maximum button mushroom production of 12.87 kg/q.

3.
Environ Res ; 209: 112822, 2022 06.
Article in English | MEDLINE | ID: mdl-35093306

ABSTRACT

Phenol is an organic contaminant widely distributed in wastewater. Biodegradation is one of the suitable methods used to remove phenol from the wastewater. In this study, the bacterial laccase and pectinase were analyzed and phenol degradation potential was studied. A total of six bacterial strains were selected and their phenol degrading potentials were studied. Laccase and pectinase producers were screened on substrate agar plates and several strains produced these enzymes in submerged fermentation. Among these enzyme producing strains, strain PD8 and PD22 exhibited potent phenol degrading ability than other strains. These two bacterial strains (Halomonas halodurans PD8 and Bacillus halodurans PD22) exhibited maximum growth in phenol-supplemented culture medium. These two organisms grown well at wide pH values (pH 3.0 and 10.0), survive well between 20 °C and 50 °C, and showed growth between 1 and 10% sodium chloride concentration. The lyophilized enzyme from PD8 and PD22 were immobilized with alginate beads cross liked with divalent cations. At 1% alginate, the binding efficiency was 40.2 ± 2.9% and it improved up to 2.0% concentration (67.5 ± 4.2%) and further increase on alginate concentration affected binding efficiency. Phenol degradation was maximum within 10 h of treatment in the immobilized packed bed column reactor (83.1 ± 3.2%) and colour removal efficiency was maximum at 12 h treatment (82.1 ± 3.9%). After four successive experimental trials more than 40% efficiency was achieved.


Subject(s)
Bioreactors , Wastewater , Bacillus , Biodegradation, Environmental , Bioreactors/microbiology , Halomonadaceae , Phenols/metabolism , Wastewater/chemistry
4.
Plants (Basel) ; 10(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34961213

ABSTRACT

Antimicrobial resistance is a public health concern resulting in high rates of morbidity and mortality worldwide. Furthermore, a high incidence of food poisoning diseases besides harmful implications of applying synthetic food additives in food preservation necessitates fabrication of safe food preservatives. Additionally, damaging effects of free radicals on human health has been reported to be involved in the incidence of serious diseases, including cancer, diabetes and cardiovascular diseases; hence, finding safe sources of antioxidants is vital. Therefore, the present study was carried out to assess the antibacterial, antiradical and carcinopreventive efficacy of different solvent extracts of pomegranate peels. Agar disk diffusion assay revealed that Staphylococcus aureus, MRSA, E. coli and S. typhimurium were highly susceptible to methanolic fraction of Punica granatum L. peels recording inhibition zones of 23.7, 21.8, 15.6 and 14.7 mm respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the methanolic fraction of Punica granatum L. peels against S. aureus were 0.125 and 0.250 mg/mL, respectively. In addition, the pomegranate acetonic and methanolic fractions revealed an impressive antiradical efficiency against DPPH (2,2-diphenyl-1-picrylhydrazyl) radical recording radical scavenging activity percentages of 86.9 and 79.4%, respectively. In this regard, the acetonic fraction of pomegranate peels revealed the highest anti-proliferative efficiency after 48 h incubation against MCF7 cancer cells recording IC50 of 8.15 µg/mL, while the methanolic extract was highly selective against transformed cancer cells compared to normal cell line recording selectivity index of 5.93. GC-MS results demonstrated that 5-Hydroxymethylfurfural was the main active component of methanolic and acetonic extracts of pomegranate peels recording relative percentages of 37.55 and 28.84% respectively. The study recommends application of pomegranate peel extracts in the biofabrication of safe food preservatives, antioxidants and carcinopreventive agents.

5.
Bioorg Chem ; 109: 104697, 2021 04.
Article in English | MEDLINE | ID: mdl-33652162

ABSTRACT

Novel one-pot multicomponent synthesis of 2-pyrimidinamine derivatives can be achieved via green chemistry, using Cu(II)-tyrosinase enzyme (Cu-Tyr) as a catalyst. This method offers mild reaction conditions and a high yield of derivatives. We synthesised several compounds in this manner and evaluated their larvicidal, and antifeedant activities. Out of the synthesised derivatives, compound 3, with a median lethal dose (LD50) of 21.43 µg/mL, was highly active against Culex quinquefasciatus, compared to compounds 1a-m and 2, and the control, hydantocidin. Compounds 1j, 1d, and 1e were low active against C. quinquefasciatus with LD50 values of 78.46, 78.59, and 79.54 µg/mL, respectively. In antifeedant screening, compounds 1j, 1l, and 2 generated 100% mortality within 24 h against Oreochromis mossambicus at 100 µg/mL, where toxicity was determined as the ratio of the number of dead and live fingerlings (%) at 24 h. In contrast, compounds 1a-f, 1i, 1m, and 3 were less toxic to O. mossambicus as compared to the control, dibromoisophakellin. Therefore, compound 3 had high larvicidal activity against C. quinquefasciatus and was less toxic to non-target aquatic species. Molecular docking studies also supported the finding that compound 3 was an effective larvicide with more inhibition ability than the control hydantocidin (-9.6 vs. -6.1 kcal/mol).


Subject(s)
Copper/chemistry , Culex/drug effects , Green Chemistry Technology/methods , Insecticides/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Animals , Feeding Behavior , Larva/drug effects , Pyrimidines/chemistry , Tilapia , Toxicity Tests
6.
Saudi J Biol Sci ; 27(6): 1482-1487, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32489284

ABSTRACT

Saprolegnosis of fresh water fishes caused by Saprolegnia diclina often results in serious economic losses to fish hatcheries. Despite the proven efficiency of malachite green as a potential fungicide in prevention and control of fish saprolegnosis, there is a strong debate about its safety aspects in use since it was documented to be responsible for many carcinogenic and teratogenic attributes. Bioactivity of four ethanolic plant extracts were assessed to attain a natural alternative to the traditional fungicide currently used in saprolegnosis control. Ethanolic extracts of Punica granatum and Thymus vulgaris exhibited a potential efficacy in suppressing mycelial growth of S. diclina at concentration of 0.5 mg/ml while extracts of Nigella sativa and Zingiber officinales were not effective respectively. The extract of pomegranate showed the highest antifungal potency with minimum inhibitory concentration (MIC) of 200 ppm while thyme extract was less effective and recorded MIC of 400 ppm against S. diclina. The acute fish toxicity of the plant extracts indicated the low toxicity of P. granatum and T. vulgaris extracts as no fish mortalities were detected at aquaria containing 200, 400 and 800 ppm of plant extracts respectively. Considering the low toxicity of these plant extracts, it may be concluded that 200 and 400 ppm of pomegranate and thyme extracts which suppressed the mycelial growth of the S. diclina could be safely used for saprolegniasis control. Both of pomegranate and thyme extracts which proved to possess a potential antifungal activity can be considered as a natural alternative fungicides to control saprolegniasis avoiding carcinogenic malachite green application.

7.
BMC Complement Med Ther ; 20(1): 25, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32020877

ABSTRACT

BACKGROUND: Candida vaginitis is a global health hazard that increases morbidity among women of childbearing age. Recent studies have revealed a high incidence of drug-resistant Candida strains. Additionally, treating Candida vulvovaginitis during pregnancy is challenging as antifungal therapy is associated with fetal abnormalities. Hence, it is important to develop novel therapeutic strategies to treat vulvovaginal candidiasis. METHODS: In this study, we used the disc diffusion method to evaluate the anticandidal activity of different Syzygium aromaticum extracts (methanol, ethyl acetate, n-hexane, and diethyl ether) against C. albicans, C. glabrata, and C. tropicalis. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis of different S. aromaticum extracts was performed to determine active components exhibiting anticandidal activity. Cytotoxicity of different clove extracts against the HUH7 cell line was evaluated. RESULTS: The ethyl acetate extract exhibited the highest antifungal activity against C. albicans, C. glabrata, and C. tropicalis with inhibition zone diameters of 20.9, 14.9, and 30.7 mm, respectively. The minimum inhibitory concentration of the S. aromaticum ethyl acetate extract was 250 µg/disc against C. tropicalis, and 500 µg/disc against C. albicans and C. glabrata, while the minimum fungicidal concentration was 0.5 mg/disc against C. tropicalis and 1 mg/disc against the C. albicans and C. glabrata. GC-MS analysis of the ethyl acetate extract revealed the main bioactive compound as eugenol (58.88%), followed by eugenyl acetate (23.86%), trans-caryophyllene (14.44%), and α-humulene (1.88%). The cytotoxicity assay indicated that the diethyl ether extract demonstrated the lowest toxicological effect against the HUH7 cell line, with a relative IC50 of 62.43 µg/ml; the methanolic extract demonstrated a higher toxicity (IC50, 24.17 µg/ml). CONCLUSION: As the S. aromaticum extract exhibited high antifungal activity at low concentrations, it can be a potential source of natural antifungal drugs.


Subject(s)
Candida albicans/drug effects , Candida glabrata/drug effects , Candida tropicalis/drug effects , Plant Extracts/pharmacology , Syzygium/chemistry , Candidiasis, Vulvovaginal/drug therapy , Female , Gas Chromatography-Mass Spectrometry , Humans , Microbial Sensitivity Tests , Saudi Arabia
8.
Bioprocess Biosyst Eng ; 42(9): 1483-1494, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31076865

ABSTRACT

Due to environmental concern, the research to date has tended to focus on how textile dye removal can be carried out in a greener manner. Therefore, this study aims to evaluate the decolorization and biotransformation pathway of Mordant Orange-1 (MO-1) by Cylindrocephalum aurelium RY06 (C. aurelium RY06). Decolorization study was conducted in a batch experiment including the investigation of the effects of physio-chemical parameters. Enzymatic activity of C. aurelium RY06 during the decolorization was also investigated. Moreover, transformation and biodegradation of MO-1 by C. aurelium RY06 were observed using the gas chromatography-mass spectrometry. Manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase enzymes were detected during the decolorization. In general, the present work concluded that the MO-1 was successfully degraded by C. aurelium RY06 and transformed to be maleic acid and to be isophtalic acid.


Subject(s)
Azo Compounds/metabolism , Coloring Agents/metabolism , Fungi/metabolism , Textiles , Biotransformation , Fungal Proteins/metabolism , Maleates/metabolism , Oxidoreductases/metabolism , Phthalic Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...