Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 19507, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37945624

ABSTRACT

The increasingly serious problem of mercury pollution has caused wide concern, and exploring adsorbent materials with high adsorption capacity is a simple and effective approach to address this concern. In the recent study, dialdehyde cellulose (DAC), cyanoacetohydrazide (CAH), and carbon disulfide (CS2) are used as raw materials for the (DAC@CAH@SK2) preparation material through the three-steps method. By utilizing the following characterization techniques; thermogravimetric analysis (TGA), N2 adsorption-desorption isotherm (BET), elemental analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD), 1HNMR and Energy Dispersive X-ray Spectroscopy (EDS) of DAC@CAH@SK2 composite. The point of zero charge (pHPZC) for the prepared DAC@CAH@SK2 also was examined. From the batch experiments, the optimum conditions were found to be pH (5-8), an Hg2+ concentration of 150 mg/L, a DAC@CAH@SK2 dose of 0.01 g, and a contact time of 180 min with a maximum adsorption quantity of 139.6 mg/g. The process of Hg2+ adsorption on the DAC@CAH@SK2 material was spontaneous exothermic, monolayer chemisorption, and well-fitted to Langmuir and pseudo-2nd-order models. The DAC@CAH@SK2 selectivity towards the Hg2+ was examined by investigating the interfering metal ions effect. The DAC@CAH@SK2 was successfully applied for the Hg2+ removal from synthetic effluents and real wastewater samples with a recovery % exceeding 95%. The prepared DAC@CAH@SK2 was regenerated using a mixture of EDTA and thiourea. Also, FT-IR analysis indicates that the synergistic complexation of N and S atoms on DAC@CAH@SK2 with Hg(II) is an essential factor leading to the high adsorption capacity.

2.
Sci Rep ; 13(1): 15786, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737297

ABSTRACT

In order to develop a novel and cost-effective adsorbent with outstanding adsorption capacity and excellent recyclability for anionic pollutants, the chitosan-modified cetyltrimethylammonium bromide sorbent (CS@CTAB) was fabricated. Fourier-transform infrared spectroscopy, N2 adsorption-desorption isotherm, elemental analysis, Thermogravimetric analysis, X-ray diffraction, and Scanning electron microscopy have been applied to evaluate both raw and surfactant modified chitosan (CS@CTAB). Azorubine, Sunset Yellow, and hexavalent chromium were used to study the adsorption behavior of CS@CTAB under various parameters such as adsorbent dose, initial dye and metal ion concentration, contact time, and temperature. Adsorption equilibrium, kinetics models and thermodynamic parameters were investigated. The adsorption isotherm fitted well with the Langmuir isotherm model, with a maximum adsorption capacity of 492.6 mg/g, 492.6 mg/g, and 490.196 mg/g for Azorubine, Sunset Yellow, and Hexavalent Chromium, respectively. The kinetic studies showed that the pseudo-second-order model provided a better correlation between experimental data. Furthermore, the calculated thermodynamic parameters confirmed that the adsorption of Cr(VI), E110, and E122 by CS@CTAB material is a spontaneous and exothermic process. The fabricated CS@CTAB adsorbent was employed for the efficient elimination of Azorubine, Sunset Yellow, and hexavalent chromium from real water samples, synthetic mixtures, and colored soft drinks, with a percentage of recovery of ~ 96%. The plausible adsorption mechanisms of Azorubine, Sunset Yellow, and hexavalent chromium on the surface of CS@CTAB are elucidated. The adsorption anticipated to be due to electrostatic interaction and hydrogen bond formation for hexavalent chromium; while the adsorption of Azorubine and Sunset Yellow, was assumed to be due to electrostatic interaction, hydrogen bonding, and n-π interaction. Finally, the study demonstrates the efficiency of CS@CTAB for the removal of anionic species from several samples, including natural water and colored beverages.

3.
Sci Rep ; 13(1): 8267, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37217542

ABSTRACT

In the present study, flax fiber based semicarbazide biosorbent was prepared in two successive steps. In the first step, flax fibers were oxidized using potassium periodate (KIO4) to yield diadehyde cellulose (DAC). Dialdehyde cellulose was, then, refluxed with semicarbazide.HCl to produce the semicarbazide functionalized dialdehyde cellulose (DAC@SC). The prepared DAC@SC biosorbent was characterized using Brunauer, Emmett and Teller (BET) and N2 adsorption isotherm, point of zero charge (pHPZC), elemental analysis (C:H:N), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The DAC@SC biosorbent was applied for the removal of the hexavalent chromium (Cr(VI)) ions and the alizarin red S (ARS) anionic dye (individually and in mixture). Experimental variables such as temperature, pH, and concentrations were optimized in detail. The monolayer adsorption capacities from the Langmuir isotherm model were 97.4 mg/g and 18.84 for Cr(VI) and ARS, respectively. The adsorption kinetics of DAC@SC indicated that the adsorption process fit PSO kinetic model. The obtained negative values of ΔG and ΔH indicated that the adsorption of Cr(VI) and ARS onto DAC@SC is a spontaneous and exothermic process. The DAC@SC biocomposite was successfully applied for the removal of Cr(VI) and ARS from synthetic effluents and real wastewater samples with a recovery (R, %) more than 90%. The prepared DAC@SC was regenerated using 0.1 M K2CO3 eluent. The plausible adsorption mechanism of Cr(VI) and ARS onto the surface of DAC@SC biocomposite was elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL
...