Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Parasit Dis ; 47(4): 744-756, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38009151

ABSTRACT

Helminth infections are a worldwide problem that affects both humans and animals in developing countries. The common pinworm Syphacia muris frequently infects lab rats and can obstruct the creation of unrelated biological experiments. The objective of this study was to examine the in vivo efficacy of silver nanoparticles against S. muris infected Wistar rats. Transmission electron microscopy and X-ray diffraction examinations of silver nanoparticles revealed highly pure polycrystals with a mean size of 4 nm. Rats were divided into group I, the control: received distilled water; groups II and III, the treated: received 2, 4 mg/kg b.w. of Ag NPs, respectively. At the end of the experimental period, all rats were euthanized and dissected for collecting worms. The surface topography of the recovered worms was displayed using light and scanning electron microscopy, and their physiological status was determined using oxidative stress biomarkers. The histological changes in the rat liver, kidney, and spleen were also examined. In the current study, Ag NPs administration revealed substantial alterations in worms collected from treated rats, including shrinkage of lips, peeling and rupture of body cuticles, and disruption of surface annulations. Also, induced a significant increase in malondialdehyde and nitric oxide levels, as well as a decrease in reduced glutathione, glutathione peroxidase and catalase levels compared to control group. Moreover, sections of treated rats' liver, kidney and spleen displayed normal cellular appearance. In conclusion, this is the first in vivo study to evaluate Ag NPs efficacy against S. muris in laboratory rats without significant toxicity.

3.
Parasitol Res ; 122(3): 705-715, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36650313

ABSTRACT

Anisakidosis is a foodborne zoonotic infection induced by members of the family Anisakidae via the consumption of raw or undercooked fish such as sushi and sashimi. Identifying anisakid larval species is critical for the epidemiology and diagnosis of diseases caused by them. This study aimed at identifying Anisakis larvae collected from marine fish in Egyptian waters based on morphological characteristics and molecular analysis. Thirty marine fish coral trout, Plectropomus areolatus, were collected from Hurghada, Red Sea, Egypt, to investigate larval nematodes of the genus Anisakis. The larvae were detected encapsulated in the peritoneal cavity and muscle of the fish host. This examination revealed that anisakid larvae naturally infected 19 fish specimens with a prevalence of 63.33% and a mean intensity of 4.1 ± 0.40. Most of them (68 larvae: 71.57%) were found in the musculature. Morphological and morphometric analyses using light and scanning electron microscopy revealed a head region with a prominent boring tooth, inconspicuous lips, and a characteristic protruded cylindrical mucron. All larvae in this study possessed the same morphology as Anisakis Larval type I. Molecular analysis based on ITS region using maximum likelihood and Bayesian phylogenetic methods confirmed them as Anisakis typica. This is the first study to identify A. typica larvae from the commercial fish coral trout P. areolatus in Egyptian waters using morphological and molecular methods.


Subject(s)
Anisakiasis , Anisakis , Ascaridoidea , Bass , Fish Diseases , Animals , Anisakis/genetics , Larva/genetics , Anisakiasis/veterinary , Anisakiasis/epidemiology , Indian Ocean , Trout , Phylogeny , Bayes Theorem , Fish Diseases/epidemiology , Fishes
SELECTION OF CITATIONS
SEARCH DETAIL
...