Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Pharm Biomed Anal ; 243: 116109, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518458

ABSTRACT

An innovative ecofriendly high-performance thin layer chromatographic (HPTLC) method with spectrophotometric detection for simultaneous determination of Tramadol (TMD), Tapentadol (TAP), and Venlafaxine (VEN) in seized dosage forms was presented. Our method was conducted to achieve separation following the optimal conditions: pre-coated silica gel plates using a green mobile phase (heptane: acetone: ammonia, 7:3:0.5 v/v), with absorbance scanning at 272 nm. The validation of the method was done following International Conference on Harmonization (ICH) guidelines, demonstrates linearity, accuracy, precision, selectivity, robustness, and system suitability. Separation was achieved with a detection limit of 0.34, 0.16, and 0.084 (ug/band) for TMD, TAP, and VEN, respectively, the method successfully analyzes seized samples. Trueness is confirmed through a high degree of similarity between HPTLC and gas chromatography results. The study's ecofriendly approach, simplicity, and selectivity position it as a promising method for efficient, on-site monitoring of seized samples.


Subject(s)
Tramadol , Tapentadol , Venlafaxine Hydrochloride , Chromatography, Thin Layer/methods , Pharmaceutical Preparations , Reproducibility of Results
2.
J Enzyme Inhib Med Chem ; 38(1): 203-215, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36382444

ABSTRACT

The present study aimed to investigate the antitumor effect of simultaneous inhibition of dihydrofolate reductase (DHFR) enzyme. We designed some novel pyrazolo[3,4-d]pyrimidines bearing different amino acid conjugates as efficient antifolate agents attributable to their structural similarity with methotrexate (MTX) and MTX-related antifolates. All compounds were tested to screen their enzymatic inhibition against DHFR compared with the reference drug MTX and for their in vitro antitumor cytotoxicity against six MTX-resistant cancer cell lines. The flow cytometry indicated that the most potent compound 7f arrested MCF-7 cells in the S-phase and induced apoptosis. Western blot for visualisation proved the ability of compound 7f to induce the expression of proapoptotic caspases and Bax proteins in MCF-7 breast cancer cell line beside its ability to diminish the expression of antiapoptotic Bcl-2 protein. Molecular modelling studies concluded that compound 7f displayed better binding energy than that of the normal ligand MTX. HIGHLIGHTSNew pyrazolo[3,4-d]pyrimidine derivatives 7a-m which are structurally similar to the classical methotrexate (MTX) and MTX-related antifolates were synthesised as antitumor agents.Novel N-acyl amino acid compound 7f exhibited marked DHFR inhibition activity that are parralel to both the molecular docking results and cytotoxic activity.Compound 7f could induce the expression of proapoptotic caspases and Bax proteins in MCF-7 breast cancer cell line beside its ability to diminish the expression of antiapoptotic Bcl-2 protein.All prepared compounds obey Lipinski rule of five except compound 7f.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Folic Acid Antagonists , Humans , Female , Pyrimidines/chemistry , bcl-2-Associated X Protein , Methotrexate/pharmacology , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Amino Acids , Structure-Activity Relationship , Tetrahydrofolate Dehydrogenase/metabolism , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Caspases/metabolism
3.
Bioorg Chem ; 129: 106207, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36270170

ABSTRACT

A new series of pyrazolo[3,4-d]pyrimidine analogues bearing different amino acid conjugates 10a-m were synthesized with the aim to evaluate their antitumor effect through simultaneous inhibition of human dihydrofolate reductase (hDHFR). All novel compounds were tested to screen their enzyme inhibition activity against (hDHFR) beside their in vitro cytotoxicity against six human MTX resistant cancer cell lines namely, human prostate cancer (PC-3), pancreatic human cancer cell lines (BxPC-3), colorectal carcinoma (HCT-116), human hepatocellular carcinoma (HepG-2), cervical carcinoma (HeLa), and mammary gland breast cancer (MCF-7), besides normal immortalized pancreatic cell line (HPDE). Compounds 10e, 10f, 10g inhibited DHFR at considerable low (IC50 < 1 µM) in comparison to MTX (IC50 = 5.61 µM) beside their characteristic cytotoxic effects on different resistant cancer cell lines. Flow cytometry was done for the most active candidate compound 10e against MCF-7 breast cancer cell line. The results illustrated that compound 10e induced apoptosis and arrested MCF-7 cell cycle in the G1/S phase. Western blot for visualization and quantification was used to confirm the capability of compound 10e to induce the expression of proapoptotic caspases and Bax proteins in MCF-7 breast cancer cell line beside its ability to reduce the expression of antiapoptotic Bcl-2 protein. Molecular modeling studies demonstrated that compound 10e elucidated binding energy of (S= - 8.4390 Kcal/mol) that exceed that of the normal ligand MTX (S= - 8.3951Kcal/mol) in addition to several favorable binding interactions with the active site residues.


Subject(s)
Antineoplastic Agents , Folic Acid Antagonists , Pyrazoles , Pyrimidines , Tetrahydrofolate Dehydrogenase , Female , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Tetrahydrofolate Dehydrogenase/metabolism , Folic Acid Antagonists/chemical synthesis , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology
4.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535550

ABSTRACT

Cancer is a multifactorial disease necessitating identification of novel targets for its treatment. Inhibition of Bcl-2 for triggered pro-apoptotic signaling is considered a promising strategy for cancer treatment. Within the current work, we aimed to design and synthesize a new series of benzimidazole- and indole-based derivatives as inhibitors of Bcl-2 protein. The market pan-Bcl-2 inhibitor, obatoclax, was the lead framework compound for adopted structural modifications. The obatoclax's pyrrolylmethine linker was replaced with straight alkylamine or carboxyhydrazine methylene linkers providing the new compounds. This strategy permitted improved structural flexibility of synthesized compounds adopting favored maneuvers for better fitting at the Bcl-2 major hydrophobic pocket. Anti-cancer activity of the synthesized compounds was further investigated through MTT-cytotoxic assay, cell cycle analysis, RT-PCR, ELISA and DNA fragmentation. Cytotoxic results showed compounds 8a, 8b and 8c with promising cytotoxicity against MDA-MB-231/breast cancer cells (IC50 = 12.69 ± 0.84 to 12.83 ± 3.50 µM), while 8a and 8c depicted noticeable activities against A549/lung adenocarcinoma cells (IC50 = 23.05 ± 1.45 and 11.63 ± 2.57 µM, respectively). The signaling Bcl-2 inhibition pathway was confirmed by molecular docking where significant docking energies and interactions with key Bcl-2 pocket residues were depicted. Moreover, the top active compound, 8b, showed significant upregulated expression levels of pro-apoptotic/anti-apoptotic of genes; Bax, Bcl-2, caspase-3, -8, and -9 through RT-PCR assay. Improving the compound's pharmaceutical profile was undertaken by introducing 8b within drug-solid/lipid nanoparticle formulation prepared by hot melting homogenization technique and evaluated for encapsulation efficiency, particle size, and zeta potential. Significant improvement was seen at the compound's cytotoxic activity. In conclusion, 8b is introduced as a promising anti-cancer lead candidate that worth future fine-tuned lead optimization and development studies while exploring its potentiality through in-vivo preclinical investigation.

5.
Pharmaceuticals (Basel) ; 13(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961906

ABSTRACT

The membrane-bound human carbonic anhydrase (hCA) IX is widely recognized as a marker of tumor hypoxia and a prognostic factor within several human cancers. Being undetected in most normal tissues, hCA-IX implies the pharmacotherapeutic advent of reduced off-target adverse effects. We assessed the potential anticancer activity of bumetanide-based analogues to inhibit the hCA-IX enzymatic activity and cell proliferation of two solid cancer cell lines, namely kidney carcinoma (A-498) and bladder squamous cell carcinoma (SCaBER). Bumetanide analogues efficiently inhibit the target hCA-IX in low nanomolar activity (IC50 = 4.4-23.7 nM) and have an excellent selectivity profile (SI = 14.5-804) relative to the ubiquitous hCA-II isoform. Additionally, molecular docking studies provided insights into the compounds' structure-activity relationship and preferential binding of small-sized as well as selective bulky ligands towards the hCA-IX pocket. In particular, 2,4-dihydro-1,2,4-triazole-3-thione derivative 9c displayed pronounced hCA-IX inhibitory activity and impressive antiproliferative activity on oncogenic A-498 kidney carcinoma cells and is being considered as a promising anticancer candidate. Future studies will aim to optimize this compound to fine-tune its anticancer activity as well as explore its potential through in-vivo preclinical studies.

6.
Bioorg Chem ; 100: 103878, 2020 07.
Article in English | MEDLINE | ID: mdl-32361486

ABSTRACT

Herein, we describe the design and synthesis of new benzenesulfonamide derivatives as selective COX-2 inhibitors based on bumetanide scaffold. Benzenesulfonamides bearing both the pyrazole 6b and the triazoles 9a, 9c were good inhibitors of COX-2 with IC50 values of 0.32, 0.28 and 0.17 µM, respectively. These benzenesulfonamides 6b, 9a and 9c exhibited a higher selectivity index than the reference drug celecoxib. Molecular modeling study showed that incorporation of bumetanide led to a unique binding mode that is most likely the reason for the observed significant COX-2 selectivity. The anti-inflammatory activity of synthesized compounds revealed that triazoles 9a and 9c demonstrated higher efficacy than celecoxib upon using in vivo carrageenan-induced rat paw edema model. Most of the prepared compounds possess low ulcerogenic potential when administered orally. Therefore, these compounds have a great potential to be developed as safe therapeutics for inflammation, pain, and other diseases where COX-2 plays important role in their pathophysiology.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Bumetanide/analogs & derivatives , Bumetanide/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Bumetanide/chemical synthesis , Bumetanide/therapeutic use , Catalytic Domain/drug effects , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/therapeutic use , Drug Design , Edema/drug therapy , Edema/metabolism , Male , Mice , Molecular Docking Simulation , Rats , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Benzenesulfonamides
7.
ChemistryOpen ; 8(7): 995-1011, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31367508

ABSTRACT

The emergence of untreatable drug-resistant strains of Mycobacterium tuberculosis is a major public health problem worldwide, and the identification of new efficient treatments is urgently needed. Mycobacterium tuberculosis cytochrome P450 CYP121A1 is a promising drug target for the treatment of tuberculosis owing to its essential role in mycobacterial growth. Using a rational approach, which includes molecular modelling studies, three series of azole pyrazole derivatives were designed through two synthetic pathways. The synthesized compounds were biologically evaluated for their inhibitory activity towards M. tuberculosis and their protein binding affinity (K D). Series 3 biarylpyrazole imidazole derivatives were the most effective with the isobutyl (10 f) and tert-butyl (10 g) compounds displaying optimal activity (MIC 1.562 µg/mL, K D 0.22 µM (10 f) and 4.81 µM (10 g)). The spectroscopic data showed that all the synthesised compounds produced a type II red shift of the heme Soret band indicating either direct binding to heme iron or (where less extensive Soret shifts are observed) putative indirect binding via an interstitial water molecule. Evaluation of biological and physicochemical properties identified the following as requirements for activity: LogP >4, H-bond acceptors/H-bond donors 4/0, number of rotatable bonds 5-6, molecular volume >340 Å3, topological polar surface area <40 Å2.

8.
Article in English | MEDLINE | ID: mdl-31177048

ABSTRACT

Failure to attain and sustain long term glycemic control is an ongoing challenge in diabetes therapy. The trend to use a combined therapy and the risk of drug-drug interaction (DDI) are elevated and thus the need for sensitive analytical methods is of great significance. Herein, a simple, robust, and sensitive reverse phase high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin (MET) and pioglitazone (PGT) in rat plasma using canagliflozin (CAN) as internal standards (IS) was developed and fully validated. Prior Chromatographic separation on an Agilent Eclipse Plus C18 (4.6 × 100 mm, 3.5 µm) using gradient mobile phase system consisting of ammonium formate pH 4.5 and acetonitrile at a flow rate of 0.5 mL min-1, within a run time of 14 min, the antidiabetic drugs were extracted from rat plasma using acetonitrile-induced protein precipitation technique. Multiple reaction monitoring in positive ion mode was used for quantitation of precursor to production at m/z 130.1 → 71.0 & 60 for MET, 357.2 → 134.2 for PGT, and 462.16 → 191.1 for CAN. Method linearity was obeyed in the range of 1 to 5000 and 1 to 2500 ng mL-1 for MET and PGT, respectively. The developed method was validated in terms of accuracy, precision, selectivity, recovery, matrix effects, and stability as per US-FDA bioanalytical guidelines and successfully applied to clinical pharmacokinetic and DDI studies with a single oral administration of target compounds. The peak plasma concentrations (Cmax) and area under the concentration-time curve (AUC) of MET was significantly influenced by the concomitant administration of PGT at equal concentration and vice versa. PGT affected the absorption and elimination rate of MET via inhibition of organic cationic transporter (OCT). Molecular modeling study revealed the significant interaction of PGT with OCT. A potential DDI in type 2 diabetic patient receiving chronic treatment with MET and PGT deserves further attention and study to improve drug therapy and prevent adverse effects.


Subject(s)
Chromatography, High Pressure Liquid/methods , Metformin/blood , Pioglitazone/blood , Tandem Mass Spectrometry/methods , Animals , Drug Interactions , Male , Metformin/administration & dosage , Metformin/pharmacokinetics , Pioglitazone/administration & dosage , Pioglitazone/pharmacokinetics , Plasma/chemistry , Rats , Rats, Wistar
9.
J Pharm Biomed Anal ; 168: 201-208, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30825803

ABSTRACT

The introduction of sildenafil (SDF) to treat erectile dysfunction has solved a widespread condition with negative on the quality of life. Recently, the co-administration of tramadol (TMD) with SDF to manage premature ejaculation has illegally increased and thus drug-drug interaction studies of these drugs became of great importance. Although certain biological functions have been altered upon co-administration of the two drugs, methods for their determination in vivo to understand their interactions have yet to be published. Herein, therefore, an HPLC method with photometric detection was developed for the determination of a binary mixture of TMD and SDF in rabbit plasma after oral administration. In this study, a reversed-phase chromatography was performed at room temperature on a C18 column with a mobile phase composed of 10 mM Na2HPO4 solution (pH 7.5): acetonitrile (45:55, v/v) at a flow rate of 0.8 mL min-1 using caffeine (CAF) as an internal standard. The detector was set at 220 nm. The total analysis time was 6 min. Calibration graphs were linear in the concentration ranges of 0.1-10 and 0.05-10 µg mL-1 with a detection limit of 0.05 and 0.02 µg mL-1 for TMD and SDF, respectively. The method was validated in terms of accuracy, precision, limit of detection and quantitation, recovery, and stability as per US FDA bioanalytical guidelines. In addition, the metabolites N-desmethylsildenafil (UK-103,320) and O-desmethyltramadol were quantified in rabbit plasma after 2 h of oral administration using LC-MS/MS. The simultaneous administration of TMD with SDF has affected peak plasma concentration (Cmax), Tmax, area under the concentration-time curve (AUC), and the elimination rate constant (Kel) of SDF. The present study is the first to give valuable insights into the drug-drug interaction and the pharmacokinetic implications associated with the co-administration of SDF and TMD.


Subject(s)
Chromatography, High Pressure Liquid/methods , Sildenafil Citrate/analysis , Tandem Mass Spectrometry/methods , Tramadol/analysis , Administration, Oral , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/analysis , Analgesics, Opioid/pharmacokinetics , Animals , Calibration , Chromatography, Reverse-Phase/methods , Drug Interactions , Drug Therapy, Combination , Limit of Detection , Male , Phosphodiesterase 5 Inhibitors/administration & dosage , Phosphodiesterase 5 Inhibitors/analysis , Phosphodiesterase 5 Inhibitors/pharmacokinetics , Rabbits , Reproducibility of Results , Sildenafil Citrate/administration & dosage , Sildenafil Citrate/pharmacokinetics , Tramadol/administration & dosage , Tramadol/analogs & derivatives , Tramadol/pharmacokinetics
10.
Bioorg Med Chem ; 27(8): 1546-1561, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30837169

ABSTRACT

The rise in multidrug resistant (MDR) cases of tuberculosis (TB) has led to the need for the development of TB drugs with different mechanisms of action. The genome sequence of Mycobacterium tuberculosis (Mtb) revealed twenty different genes coding for cytochrome P450s. CYP121A1 catalyzes a CC crosslinking reaction of dicyclotyrosine (cYY) producing mycocyclosin and current research suggests that either mycocyclosin is essential or the overproduction of cYY is toxic to Mtb. A series of 1,4-dibenzyl-2-imidazol-1-yl-methylpiperazine derivatives were designed and synthesised as cYY mimics. The derivatives substituted in the 4-position of the phenyl rings with halides or alkyl group showed promising antimycobacterial activity (MIC 6.25 µg/mL), with the more lipophilic branched alkyl derivatives displaying optimal binding affinity with CYP121A1 (iPr KD = 1.6 µM; tBu KD = 1.2 µM). Computational studies revealed two possible binding modes within the CYP121A1 active site both of which would effectively block cYY from binding.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Dipeptides/chemistry , Dipeptides/pharmacology , Mycobacterium tuberculosis/enzymology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Antitubercular Agents/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/chemistry , Dipeptides/chemical synthesis , Drug Design , Humans , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Peptides, Cyclic/chemical synthesis , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacology , Tuberculosis/drug therapy
11.
Saudi Pharm J ; 19(1): 43-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-23960741

ABSTRACT

A simple, sensitive and rapid chromatographic method was developed and validated for the simultaneous quantification of atenolol and chlorthalidone in human plasma using hydrochlorothiazide as internal standard (IS). The method utilized proteins precipitation with acetonitril as the only sample preparation involved prior to reverse phase-HPLC. The analytes were chromatographed on Shim-pack cyanopropyl column with isocratic elution with 10 mM KH2PO4 (pH 6.0) - methanol (70:30, v/v) at ambient temperature with flow rate of 1 mL min(-1) and UV detection at 225 nm. The chromatographic run time was less than 10 min for the mixture. The calibration curves were linear over the range of 0.1-10 µg mL(-1). The method was validated in terms of accuracy, precision, absolute recovery, freeze-thaw stability, bench-top stability and re-injection reproducibility. The within- and between-day accuracy and precision were found to be within acceptable limits <15%. The analytes were stable after three freeze-thaw cycles (deviation <15%). The proposed method was specific for the simultaneous determination of atenolol and chlorthalidone in human plasma where there was no interference from endogenous biological substances.

12.
J AOAC Int ; 92(3): 813-9, 2009.
Article in English | MEDLINE | ID: mdl-19610372

ABSTRACT

An HPLC method with photometric detection has been developed for determination of a binary mixture of amiloride hydrochloride and hydrochlorothiazide in human urine using chlorthalidone as the internal standard. Reversed-phase chromatography was performed at room temperature on a cyanopropyl column with the mobile phase consisting of a 10 mM KH2PO4 solution (pH 4.5)-methanol (70 + 30, v/v) at a flow rate of 1 ml/min. The detector was set at 214 nm. The total analysis time was 10 min. The method was validated in terms of accuracy, precision, absolute recovery, freeze-thaw stability, bench-top stability, and re-injection reproducibility. The procedure shows good accuracy, repeatability, and selectivity. Moreover, the method was applied directly to urine that had not undergone prior treatment. The intra- and interday coefficients of variation for all compounds were below 4%, and the method was highly accurate, with a relative error for all compounds that was below 8%. No interference from endogenous compounds in urine samples was found. The proposed method, which is rapid, simple, and does not require any separation steps, has been successfully applied to the assay of human urine containing amiloride hydrochloride and hydrochlorothiazide.


Subject(s)
Amiloride/urine , Chromatography, High Pressure Liquid/methods , Hydrochlorothiazide/urine , Calibration , Drug Stability , Humans , Hydrogen-Ion Concentration
13.
J AOAC Int ; 92(2): 404-9, 2009.
Article in English | MEDLINE | ID: mdl-19485198

ABSTRACT

A high-performance liquid chromatographic method was developed for the simultaneous determination of 2 ternary mixtures containing amiloride hydrochloride, atenolol, hydrochlorothiazide, and chlorthalidone used in hypertension therapy. The use of cyanopropyl column results in satisfactory separation of both mixtures. The mobile phase consisted of 10 mM KH2PO4 buffer (pH 4.5) and methanol in a ratio of (75 + 25% v/v), at a flow rate of 1 mL/min. UV detector was operated at 275 nm. Calibration graphs were linear in the concentration ranges of 2-10, 20-200, 10-100, and 5-50 microg/mL for amiloride hydrochloride, atenolol, hydrochlorothiazide, and chlorthalidone, respectively. Intraday and interday precision values (relative standard deviation) were <1.13 for mixture I (amiloride hydrochloride, atenolol, chlorthalidone), and <0.93 for mixture II (amiloride hydrochloride, atenolol, hydrochlorothiazide). The method was successfully applied for the determination of the 2 combinations in laboratory-prepared mixtures and commercial pharmaceutical formulation with high accuracy and precision. Statistical comparison of the results with those of the published methods showed excellent agreement and indicates no significant difference between them.


Subject(s)
Amiloride/analysis , Atenolol/analysis , Chlorthalidone/analysis , Chromatography, High Pressure Liquid/methods , Hydrochlorothiazide/analysis , Amiloride/administration & dosage , Atenolol/administration & dosage , Capsules , Chemistry, Pharmaceutical , Chlorthalidone/administration & dosage , Chromatography, High Pressure Liquid/statistics & numerical data , Humans , Hydrochlorothiazide/administration & dosage , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...