Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1281: 341906, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38783744

ABSTRACT

BACKGROUND: Detection of elements in individual cells by inductively coupled plasma (ICP) spectrometry has recently attracted significant interest in biological research, due to the unique ability of ICP spectrometry for trace element analysis. However, performing single-cell analysis using ICP optical emission spectrometry (ICP-OES) remains a challenge due to the small size and discrete nature of cells. This is while ICP-OES can serve as a cost-effective and label-free method for this purpose. Therefore, it is necessary to improve the current ICP-OES technique to facilitate the detection of elements in single cells, thereby unlocking novel applications. RESULTS: A new conical ICP torch, which has been illustrated to offer better analytical performance than the conventional ones, was applied to achieve the detection of calcium in single micro-sized cells. A new heated chamber was designed and coupled with a high-efficiency nebulizer as the sample introduction system. For the detection of single SiO2 particles, the number of particle events obtained by the new sample introduction system was found to be up to 9 times higher than that of the conventional system without sacrificing the signal intensity. Subsequently, calcium in human breast cancer cells (MDA-MB-231), mice breast cancer cells (Py8119), and mice osteocytes (MLO-Y4) was successfully detected using the new ICP-OES system. The cell detection efficiency turned out to be around 2%-3% which is much higher than that the reported values in previous single-cell ICP-OES research. Finally, as a new application, the effect of Yoda1, a recently identified activator of Piezo1 calcium channel, on osteocytes was investigated. The calcium content in Yoda1-treated MLO-Y4 cells was seen increase by 36% compared to the control sample. SIGNIFICANCE: This research reveals the capability of ICP-OES in single-cell analysis for micro-sized cells which was made possible by the new conical ICP torch and the new sample introduction system. The ability to detect calcium in single mammalian cells enables the first ever application of this technique to assess the impact of the Yoda1 activator on the calcium level in osteocytes.


Subject(s)
Calcium , Osteocytes , Single-Cell Analysis , Animals , Mice , Calcium/analysis , Calcium/metabolism , Humans , Osteocytes/cytology , Osteocytes/metabolism , Cell Line, Tumor
2.
Anal Chem ; 92(17): 11786-11794, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32791823

ABSTRACT

Significant advancement has been achieved in single-particle analysis with the new conical ICP torch in terms of sensitivity, precision, and throughput. Monodisperse desolvated particles of eight elements (Na, Al, Ag, Sr, Ca, Mg, Fe, and Be) were injected into the conical torch, and signal peak characteristics, precision, and kinetics of atomization and ionization were investigated with optical spectrometry. A particle introduction system was designed to ensure a smooth and uninterrupted delivery of desolvated particles to the plasma. The important finding is that, compared with the conventional Fassel torch, the conical torch offers a 1.5-8 times higher peak intensity, a 2-4 times higher peak area, a 2 times shorter peak width, and higher precision (i.e., a 1.5 times lower RSD for peak intensity and a 1.8 times lower RSD for peak width on average). Also, mass detection limits were found to be similar or up to 8 times lower (i.e., 2 times lower diameter detection limit) for the conical torch. The results indicate that these features are due to a much higher electron density, excitation temperature, and robustness which, together with an improved particle trajectory, lead to rapid vaporization/atomization/ionization of particles with minimized atom/ion cloud diffusion. Finally, the torch was demonstrated to be capable of analyzing single particles at a rate of at least 2000 particles per second with high sensitivity and precision. On the basis of these results, the conical torch is expected to bring about new possibilities in ICP-based single-particle analysis.

3.
J Colloid Interface Sci ; 523: 35-44, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29605739

ABSTRACT

HYPOTHESIS: Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. EXPERIMENTS: Yb2O3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. FINDINGS: Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb2O3, with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings.

4.
Anal Chem ; 90(5): 3036-3044, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29268014

ABSTRACT

A completely new ICP torch for optical/mass spectrometry is introduced with a conical geometry leading to significant reduction in gas and power consumption. As a new holistic methodology, the torch has been designed on the basis of fluid flow patterns, heat transfer, plasma physics, and analytical performance. Computer simulations, capable of accounting for magneto-hydrodynamic effects, have been used to optimize torch geometry. The result is a "conical" torch with up to 70% reduction in argon flow and more than 4 times power density compared with traditional "cylindrical" torches. Based on experimental measurements, these features lead to a stable plasma with 1000-1700K higher excitation/rotational temperature and a 5-fold increase in electron number density compared to common torches. Interferences from easily ionizable elements (e.g., Na) are also observed to be minimized due to 3 times higher robustness (Mg II/Mg I ratio). Eventually, analytical parameters including detection limits for multielement analysis indicate comparable/better performance of the new torch in comparison with conventional torches.

5.
Can J Microbiol ; 63(5): 384-391, 2017 May.
Article in English | MEDLINE | ID: mdl-28177787

ABSTRACT

Approximately 200 000 Canadians acquire healthcare-associated bacterial infections each year and several-fold more acquire food-borne bacterial illnesses. Bacterial spores are particularly problematic because they can survive on surfaces for several months. Owing to its sporicidal activity, copper alloy sheet metal is sometimes used in hospital settings, but its widespread use is limited by cost and incompatibility with complex furniture and instrument designs and topographies. A potential alternative is the use of thermal spray technology to coat surfaces with copper alloys. We compared the sporicidal activity of thermally sprayed copper alloy on stainless steel with that of copper alloy sheet metal against Bacillus subtilis spores. Spores remained intact for at least 1 week on uncoated stainless steel, whereas spore fragmentation was initiated within 2 h of exposure to either copper surface. Less than 15% of spores were viable 2 h after exposure to either copper surface, as compared with stainless steel. By day 7, only degraded spores and petal-like nanoflowers were present on the copper surfaces. Nanoflowers, which are laminar arrangements of thin crystal sheets composed of carbon - copper phosphate, appeared to be derived from the degraded spores. Altogether, these results indicate that a thermal-sprayed copper alloy coating on stainless steel provides sporicidal activity similar to that afforded by copper alloy sheet metal.


Subject(s)
Bacillus subtilis/drug effects , Copper/pharmacology , Disinfectants/pharmacology , Spores, Bacterial/drug effects , Alloys , Canada , Stainless Steel
6.
Sci Rep ; 6: 24670, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27091306

ABSTRACT

This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces.

7.
J Colloid Interface Sci ; 418: 292-9, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24461848

ABSTRACT

Experiments were done to observe the coalescence of highly viscous liquid droplets (87 wt% glycerin-in-water solutions) deposited onto a flat, solid steel plate. Droplets were deposited sequentially in straight lines or square droplet arrays. Droplet center-to-center distance was varied and the final dimensions of lines and sheets measured from photographs. When overlapping droplets were deposited surface tension forces pulled impacting droplets towards those already on the surface, a phenomena known as drawback. A dimensionless drawback index, quantifying the extent of droplet displacement, was calculated from experimental measurements for different values of droplet overlap. At large overlaps droplets deposited in a line or square array coalesced to form a circular film. When the droplet center-to-center distance increased, leading to less interaction, long, thin lines and square sheets were formed. As overlap was further decreased lines and sheets became discontinuous. A simple model was developed to predict the conditions under which rupture occurred. The lowest droplet overlap ratio (defined as droplet overlap distance divided by droplet spread diameter) at which a continuous liquid film could be formed was λ=0.293. At large overlap ratios (λ>0.6) droplets deposited in a square array formed a circular film. The minimum thickness of a continuous film formed by coalescence of droplets was shown to vary from 5% to 70% of the initial droplet diameter while increasing impact Weber and Reynolds number reduced the film thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...