Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Photonics ; 17(3): 231-235, 2023.
Article in English | MEDLINE | ID: mdl-36909208

ABSTRACT

Lightning discharges between charged clouds and the Earth's surface are responsible for considerable damages and casualties. It is therefore important to develop better protection methods in addition to the traditional Franklin rod. Here we present the first demonstration that laser-induced filaments-formed in the sky by short and intense laser pulses-can guide lightning discharges over considerable distances. We believe that this experimental breakthrough will lead to progress in lightning protection and lightning physics. An experimental campaign was conducted on the Säntis mountain in north-eastern Switzerland during the summer of 2021 with a high-repetition-rate terawatt laser. The guiding of an upward negative lightning leader over a distance of 50 m was recorded by two separate high-speed cameras. The guiding of negative lightning leaders by laser filaments was corroborated in three other instances by very-high-frequency interferometric measurements, and the number of X-ray bursts detected during guided lightning events greatly increased. Although this research field has been very active for more than 20 years, this is the first field-result that experimentally demonstrates lightning guided by lasers. This work paves the way for new atmospheric applications of ultrashort lasers and represents an important step forward in the development of a laser based lightning protection for airports, launchpads or large infrastructures.

2.
Sensors (Basel) ; 20(5)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150914

ABSTRACT

In this work, we present a novel technique to locate partial discharge (PD) sources based on the concept of time reversal. The localization of the PD sources is of interest for numerous applications, including the monitoring of power transformers, Gas Insulated Substations, electric motors, super capacitors, or any other device or system that can suffer from PDs. To the best of the authors' knowledge, this is the first time that the concept of time reversal is applied to localize PD sources. Partial discharges emit both electromagnetic and acoustic waves. The proposed method can be used to localize PD sources using either electromagnetic or acoustic waves. As a proof of concept, we present only the results for the electromagnetic case. The proposed method consists of three general steps: (1) recording of the waves from the PD source(s) via proper sensor(s), (2) the time-reversal and back-propagation of the recorded signal(s) into the medium using numerical simulations, and (3) the localization of focal spots. We demonstrate that, unlike the conventional techniques based on the time difference of arrival, the proposed time reversal method can accurately localize PD sources using only one sensor. As a result, the proposed method is much more cost effective compared to existing techniques. The performance of the proposed method is tested considering practical scenarios in which none of the former developed methods can provide reasonable results. Moreover, the proposed method has the unique advantage of being able to locate multiple simultaneous PD sources and doing so with a single sensor. The efficiency of the method against the variation in the polarization of the PDs, their length, and against environmental noise is also investigated. Finally, the validity of the proposed procedure is tested against experimental observations.

3.
Sci Rep ; 9(1): 17372, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31758075

ABSTRACT

Electromagnetic Time Reversal (EMTR) has been used to locate different types of electromagnetic sources. We propose a novel technique based on the combination of EMTR and Machine Learning (ML) for source localization. We show for the first time that ML techniques can be used in conjunction with EMTR to reduce the required number of sensors to only one for the localization of electromagnetic sources in the presence of scatterers. In the EMTR part, we use 2D-FDTD method to generate 2D profiles of the vertical electric field as RGB images. Next, in the ML part, we take advantage of transfer learning techniques by using the pretrained VGG-19 Convolutional Neural Network (CNN) as the feature extractor tool. To the best of our knowledge, this is the first time that the knowledge of pretrained CNNs is applied to simulation-generated images. We demonstrate the skill of the developed methodology in localizing two kinds of electromagnetic sources, namely RF sources with a bandwidth of 0.1-10 MHz and lightning impulses. For the localization of lightning, based on the experimental recordings in the Säntis region, the new approach enables accurate 2D lightning localization using only one sensor, as opposed to current lightning location systems that need at least two sensors to operate.

SELECTION OF CITATIONS
SEARCH DETAIL
...