Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 74(2): 289-301, 2017 08.
Article in English | MEDLINE | ID: mdl-28303313

ABSTRACT

Rivers are known to be major contributors to eutrophication in marine coastal waters, but little is known on the short-term impact of freshwater surges on the structure and functioning of the marine plankton community. The effect of adding river water, reducing the salinity by 15 and 30%, on an autumn plankton community in a Mediterranean coastal lagoon (Thau Lagoon, France) was determined during a 6-day mesocosm experiment. Adding river water brought not only nutrients but also chlorophyceans that did not survive in the brackish mesocosm waters. The addition of water led to initial increases (days 1-2) in bacterial production as well as increases in the abundances of bacterioplankton and picoeukaryotes. After day 3, the increases were more significant for diatoms and dinoflagellates that were already present in the Thau Lagoon water (mainly Pseudo-nitzschia spp. group delicatissima and Prorocentrum triestinum) and other larger organisms (tintinnids, rotifers). At the same time, the abundances of bacterioplankton, cyanobacteria, and picoeukaryote fell, some nutrients (NH4+, SiO43-) returned to pre-input levels, and the plankton structure moved from a trophic food web based on secondary production to the accumulation of primary producers in the mesocosms with added river water. Our results also show that, after freshwater inputs, there is rapid emergence of plankton species that are potentially harmful to living organisms. This suggests that flash flood events may lead to sanitary issues, other than pathogens, in exploited marine areas.


Subject(s)
Carbon/chemistry , Plankton , Rivers/chemistry , Animals , Bacteria , Food Chain , France , Fresh Water , Rotifera , Salinity
2.
Microb Ecol ; 71(3): 575-88, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26626911

ABSTRACT

The growth rates of planktonic microbes in the pelagic zone of the Eastern Mediterranean Sea are nutrient limited, but the type of limitation is still uncertain. During this study, we investigated the occurrence of N and P limitation among different groups of the prokaryotic and eukaryotic (pico-, nano-, and micro-) plankton using a microcosm experiment during stratified water column conditions in the Cretan Sea (Eastern Mediterranean). Microcosms were enriched with N and P (either solely or simultaneously), and the PO4 turnover time, prokaryotic heterotrophic activity, primary production, and the abundance of the different microbial components were measured. Flow cytometric and molecular fingerprint analyses showed that different heterotrophic prokaryotic groups were limited by different nutrients; total heterotrophic prokaryotic growth was limited by P, but only when both N and P were added, changes in community structure and cell size were detected. Phytoplankton were N and P co-limited, with autotrophic pico-eukaryotes being the exception as they increased even when only P was added after a 2-day time lag. The populations of Synechococcus and Prochlorococcus were highly competitive with each other; Prochlorococcus abundance increased during the first 2 days of P addition but kept increasing only when both N and P were added, whereas Synechococcus exhibited higher pigment content and increased in abundance 3 days after simultaneous N and P additions. Dinoflagellates also showed opportunistic behavior at simultaneous N and P additions, in contrast to diatoms and coccolithophores, which diminished in all incubations. High DNA content viruses, selective grazing, and the exhaustion of N sources probably controlled the populations of diatoms and coccolithophores.


Subject(s)
Bacteria/metabolism , Eukaryota/metabolism , Seawater/microbiology , Viruses/metabolism , Autotrophic Processes , Bacteria/classification , Bacteria/isolation & purification , Eukaryota/classification , Eukaryota/isolation & purification , Heterotrophic Processes , Mediterranean Sea , Seawater/chemistry , Viruses/classification , Viruses/isolation & purification
3.
Environ Microbiol ; 13(7): 1842-57, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21605305

ABSTRACT

Population dynamics in the microbial food web are influenced by resource availability and predator/parasitism activities. Climatic changes, such as an increase in temperature and/or UV radiation, can also modify ecological systems in many ways. A series of enclosure experiments was conducted using natural microbial communities from a Mediterranean lagoon to assess the response of microbial communities to top-down control [grazing by heterotrophic nanoflagellates (HNF), viral lysis] and bottom-up control (nutrients) under various simulated climatic conditions (temperature and UV-B radiations). Different biological assemblages were obtained by separating bacteria and viruses from HNF by size fractionation which were then incubated in whirl-Pak bags exposed to an increase of 3°C and 20% UV-B above the control conditions for 96 h. The assemblages were also provided with an inorganic and organic nutrient supply. The data show (i) a clear nutrient limitation of bacterial growth under all simulated climatic conditions in the absence of HNF, (ii) a great impact of HNF grazing on bacteria irrespective of the nutrient conditions and the simulated climatic conditions, (iii) a significant decrease in burst size (BS) (number of intracellular lytic viruses per bacterium) and a significant increase of VBR (virus to bacterium ratio) in the presence of HNF, and (iv) a much larger temperature effect than UV-B radiation effect on the bacterial dynamics. These results show that top-down factors, essentially HNF grazing, control the dynamics of the lagoon bacterioplankton assemblage and that short-term simulated climate changes are only a secondary effect controlling microbial processes.


Subject(s)
Bacteria/growth & development , Climate Change , Food Chain , Phytoplankton/growth & development , Viruses/growth & development , Water Microbiology , Bacteria/virology , Ecosystem , Mediterranean Sea , Phytoplankton/microbiology , Phytoplankton/virology , Population Dynamics , Principal Component Analysis , Seawater/microbiology , Seawater/virology , Temperature , Ultraviolet Rays
4.
Microb Ecol ; 41(1): 56-68, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11252164

ABSTRACT

With the continuing increase of ultraviolet-B radiation (UVBR: 280-320 nm) fluxes toward the Earth's surface, there is concern regarding a possible negative impact on heterotrophic bacterioplankton. The effects of enhanced UVBR on a natural bacterioplankton community were studied during a 7-day experiment conducted in mesocosms (1500 L). Four light regimes were tested: natural light, 280 to 313 nm excluded UVBR, and two levels of UVBR enhancement. During the first 3 days of the experiment characterized by high inorganic nutrient concentrations (nitrates > 1 µmol L-1 and ammonium > 0.1 µmol L-l), UVBR had no effect on both bacterial abundances and activities. From day 4 to the end of the experiment, nitrate concentrations remained low (

SELECTION OF CITATIONS
SEARCH DETAIL
...