Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 170: 108014, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301515

ABSTRACT

BACKGROUND: Across medicine, prognostic models are used to estimate patient risk of certain future health outcomes (e.g., cardiovascular or mortality risk). To develop (or train) prognostic models, historic patient-level training data is needed containing both the predictive factors (i.e., features) and the relevant health outcomes (i.e., labels). Sometimes, when the health outcomes are not recorded in structured data, these are first extracted from textual notes using text mining techniques. Because there exist many studies utilizing text mining to obtain outcome data for prognostic model development, our aim is to study the impact of the text mining quality on downstream prognostic model performance. METHODS: We conducted a simulation study charting the relationship between text mining quality and prognostic model performance using an illustrative case study about in-hospital mortality prediction in intensive care unit patients. We repeatedly developed and evaluated a prognostic model for in-hospital mortality, using outcome data extracted by multiple text mining models of varying quality. RESULTS: Interestingly, we found in our case study that a relatively low-quality text mining model (F1 score ≈ 0.50) could already be used to train a prognostic model with quite good discrimination (area under the receiver operating characteristic curve of around 0.80). The calibration of the risks estimated by the prognostic model seemed unreliable across the majority of settings, even when text mining models were of relatively high quality (F1 ≈ 0.80). DISCUSSION: Developing prognostic models on text-extracted outcomes using imperfect text mining models seems promising. However, it is likely that prognostic models developed using this approach may not produce well-calibrated risk estimates, and require recalibration in (possibly a smaller amount of) manually extracted outcome data.


Subject(s)
Critical Care , Data Mining , Humans , Prognosis , Computer Simulation , Outcome Assessment, Health Care
2.
Stud Health Technol Inform ; 302: 815-816, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203502

ABSTRACT

Diagnosis classification in the emergency room (ER) is a complex task. We developed several natural language processing classification models, looking both at the full classification task of 132 diagnostic categories and at several clinically applicable samples consisting of two diagnoses that are hard to distinguish.


Subject(s)
Emergency Service, Hospital , Natural Language Processing
SELECTION OF CITATIONS
SEARCH DETAIL
...