Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 291(2027): 20240675, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39045693

ABSTRACT

Greenhouse gas (GHG) emissions from livestock production must be urgently tackled to substantially reduce their contribution to global warming. Simply reducing livestock numbers to this end risks impacting negatively on food security, rural livelihoods and climate change adaptation. We argue that significant mitigation of livestock emissions can be delivered immediately by improving animal health and hence production efficiency, but this route is not prioritized because its benefits, although intuitive, are poorly quantified. Rigorous methodology must be developed to estimate emissions from animal disease and hence achievable benefits from improved health through interventions. If, as expected, climate change is to affect the distribution and severity of health conditions, such quantification becomes of even greater importance. We have therefore developed a framework and identified data sources for robust quantification of the relationship between animal health and greenhouse gas emissions, which could be applied to drive and account for positive action. This will not only help mitigate climate change but at the same time promote cost-effective food production and enhanced animal welfare, a rare win-win in the search for a sustainable planetary future.


Subject(s)
Climate Change , Greenhouse Gases , Livestock , Animals , Greenhouse Gases/analysis , Animal Husbandry/methods , Global Warming , Animal Welfare
2.
Poult Sci ; 101(7): 101933, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35679670

ABSTRACT

There is a trend toward broiler production systems with higher welfare requirements, that use slower growing broiler strains, apply a reduced stocking density and provide environmental enrichment. Although these separate factors each contribute to increased broiler welfare, there is little information on their combined effect on broiler welfare under commercial conditions, and on the variation in welfare performance of flocks within production systems. The aim of this study was to compare the welfare performance and the between-flock variation in welfare of 3 Dutch commercial broiler production systems differing in welfare requirements: Conventional (C), Dutch Retail Broiler (DRB) and Better Life one star (BLS). We applied a welfare assessment method based on the Welfare Quality broiler assessment protocol, in which we used 5 animal-based welfare measures collected by slaughterhouses and hatcheries (mortality, footpad dermatitis, hock burn, breast irritation, scratches), and 3 resource- or management-based measures (stocking density, early feeding, environmental enrichment). Data were collected for at least 1889 flocks per production system over a 2-year period. To compare the different measures and to generate an overall flock welfare score, we calculated a score on a scale from 0 to 100 (bad-good) for each measure based on expert opinion. The overall flock score was the sum of the scores of the different welfare measures. The results showed that with increasing welfare requirements, a higher total welfare score was found across production systems (BLS > DRB > C; P < 0.0001). Regarding individual measures, C generally had lower (worse) scores than BLS and DRB (P < 0.05), except for scratches where C had highest (best) score (P < 0.001). Both welfare measure scores and the total welfare score of flocks showed large variation within and overlap between systems, and the latter especially when only the animal-based measures were included in the total flock score. Total flock score ranges including animal-based measures only were: 112.1 to 488.3 for C, 113.0 to 486.9 for DRB, 151.3 to 490.0 for BLS (on a scale from 0 [bad]-500 [good]), with median values of 330.8 for C, 370.9 for DRB, and 396.1 for BLS respectively. This indicates that factors such as farm management and day-old chick quality can have a major effect on the welfare performance of a flock and that there is room for welfare improvement in all production systems.


Subject(s)
Chickens , Poultry Diseases , Abattoirs , Animal Husbandry/methods , Animal Welfare , Animals , Poultry Diseases/epidemiology , Tarsus, Animal
3.
Neurosci Conscious ; 2019(1): niz011, 2019.
Article in English | MEDLINE | ID: mdl-31456886

ABSTRACT

Subjective experience can be influenced by top-down factors, such as expectations and stimulus relevance. Recently, it has been shown that expectations can enhance the likelihood that a stimulus is consciously reported, but the neural mechanisms supporting this enhancement are still unclear. We manipulated stimulus expectations within the attentional blink (AB) paradigm using letters and combined visual psychophysics with magnetoencephalographic (MEG) recordings to investigate whether prior expectations may enhance conscious access by sharpening stimulus-specific neural representations. We further explored how stimulus-specific neural activity patterns are affected by the factors expectation, stimulus relevance and conscious report. First, we show that valid expectations about the identity of an upcoming stimulus increase the likelihood that it is consciously reported. Second, using a series of multivariate decoding analyses, we show that the identity of letters presented in and out of the AB can be reliably decoded from MEG data. Third, we show that early sensory stimulus-specific neural representations are similar for reported and missed target letters in the AB task (active report required) and an oddball task in which the letter was clearly presented but its identity was task-irrelevant. However, later sustained and stable stimulus-specific representations were uniquely observed when target letters were consciously reported (decision-dependent signal). Fourth, we show that global pre-stimulus neural activity biased perceptual decisions for a 'seen' response. Fifth and last, no evidence was obtained for the sharpening of sensory representations by top-down expectations. We discuss these findings in light of emerging models of perception and conscious report highlighting the role of expectations and stimulus relevance.

4.
Neuroimage ; 200: 242-249, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31229656

ABSTRACT

The auditory cortex is sensitive to many forms of acoustic regularity, resulting in suppressed neural activity for expected auditory events. It is unclear whether this activity reduction for expected events is the result of suppression of neurons that are tuned to the expected stimulus (i.e., dampening), or alternatively suppression of neurons that are tuned away from the expected stimulus (i.e., sharpening). In the present study, we adjudicated between these models by characterizing the effect of expectation on the ability to classify the identity of auditory stimuli from auditory neural activity patterns, using magnetoencephalography (MEG) in healthy human observers. Participants listened to pure tone pairs, in which the identity of the second tone was either expected or unexpected. The task of the participants was to detect a target tone, which deviated strongly from both the expected and unexpected tones. We found a strong suppression of the overall neural response in the expected condition compared to the unexpected condition. Linear classifiers showed a reduced ability to decode stimulus identity from event-related auditory fields in the expected condition compared to the unexpected condition. This suggests that stimulus-specific event-related activity is dampened for expected tones in auditory cortex.


Subject(s)
Anticipation, Psychological/physiology , Auditory Cortex/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Adult , Female , Humans , Magnetoencephalography , Male , Young Adult
5.
eNeuro ; 5(4)2018.
Article in English | MEDLINE | ID: mdl-30310862

ABSTRACT

A relatively new analysis technique, known as neural decoding or multivariate pattern analysis (MVPA), has become increasingly popular for cognitive neuroimaging studies over recent years. These techniques promise to uncover the representational contents of neural signals, as well as the underlying code and the dynamic profile thereof. A field in which these techniques have led to novel insights in particular is that of visual working memory (VWM). In the present study, we subjected human volunteers to a combined VWM/imagery task while recording their neural signals using magnetoencephalography (MEG). We applied multivariate decoding analyses to uncover the temporal profile underlying the neural representations of the memorized item. Analysis of gaze position however revealed that our results were contaminated by systematic eye movements, suggesting that the MEG decoding results from our originally planned analyses were confounded. In addition to the eye movement analyses, we also present the original analyses to highlight how these might have readily led to invalid conclusions. Finally, we demonstrate a potential remedy, whereby we train the decoders on a functional localizer that was specifically designed to target bottom-up sensory signals and as such avoids eye movements. We conclude by arguing for more awareness of the potentially pervasive and ubiquitous effects of eye movement-related confounds.


Subject(s)
Eye Movement Measurements , Imagination/physiology , Magnetoencephalography/standards , Memory, Short-Term/physiology , Pattern Recognition, Automated/standards , Pattern Recognition, Visual/physiology , Adolescent , Adult , Eye Movement Measurements/standards , Female , Humans , Magnetoencephalography/methods , Male , Middle Aged , Pattern Recognition, Automated/methods , Young Adult
6.
J Cogn Neurosci ; 30(9): 1366-1377, 2018 09.
Article in English | MEDLINE | ID: mdl-29762101

ABSTRACT

Prior knowledge about the visual world can change how a visual stimulus is processed. Two forms of prior knowledge are often distinguished: stimulus familiarity (i.e., whether a stimulus has been seen before) and stimulus expectation (i.e., whether a stimulus is expected to occur, based on the context). Neurophysiological studies in monkeys have shown suppression of spiking activity both for expected and for familiar items in object-selective inferotemporal cortex. It is an open question, however, if and how these types of knowledge interact in their modulatory effects on the sensory response. To address this issue and to examine whether previous findings generalize to noninvasively measured neural activity in humans, we separately manipulated stimulus familiarity and expectation while noninvasively recording human brain activity using magnetoencephalography. We observed independent suppression of neural activity by familiarity and expectation, specifically in the lateral occipital complex, the putative human homologue of monkey inferotemporal cortex. Familiarity also led to sharpened response dynamics, which was predominantly observed in early visual cortex. Together, these results show that distinct types of sensory knowledge jointly determine the amount of neural resources dedicated to object processing in the visual ventral stream.


Subject(s)
Anticipation, Psychological/physiology , Brain/physiology , Recognition, Psychology/physiology , Visual Perception/physiology , Female , Humans , Magnetoencephalography , Male , Neuropsychological Tests , Signal Processing, Computer-Assisted , Uncertainty , Visual Pathways/physiology , Young Adult
7.
Elife ; 72018 05 29.
Article in English | MEDLINE | ID: mdl-29807570

ABSTRACT

Visual perception and imagery rely on similar representations in the visual cortex. During perception, visual activity is characterized by distinct processing stages, but the temporal dynamics underlying imagery remain unclear. Here, we investigated the dynamics of visual imagery in human participants using magnetoencephalography. Firstly, we show that, compared to perception, imagery decoding becomes significant later and representations at the start of imagery already overlap with later time points. This suggests that during imagery, the entire visual representation is activated at once or that there are large differences in the timing of imagery between trials. Secondly, we found consistent overlap between imagery and perceptual processing around 160 ms and from 300 ms after stimulus onset. This indicates that the N170 gets reactivated during imagery and that imagery does not rely on early perceptual representations. Together, these results provide important insights for our understanding of the neural mechanisms of visual imagery.


Subject(s)
Imagination/physiology , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Adult , Brain Mapping , Female , Humans , Magnetoencephalography , Male , Photic Stimulation , Time Factors , Visual Cortex/anatomy & histology
8.
PLoS One ; 12(10): e0187101, 2017.
Article in English | MEDLINE | ID: mdl-29077739

ABSTRACT

Shortening or omitting the dry period of dairy cows improves metabolic health in early lactation and reduces management transitions for dairy cows. The success of implementation of these strategies depends on their impact on milk yield and farm profitability. Insight in these impacts is valuable for informed decision-making by farmers. The aim of this study was to investigate how shortening or omitting the dry period of dairy cows affects production and cash flows at the herd level, and greenhouse gas emissions per unit of milk, using a dynamic stochastic simulation model. The effects of dry period length on milk yield and calving interval assumed in this model were derived from actual performance of commercial dairy cows over multiple lactations. The model simulated lactations, and calving and culling events of individual cows for herds of 100 cows. Herds were simulated for 5 years with a dry period of 56 (conventional), 28 or 0 days (n = 50 herds each). Partial cash flows were computed from revenues from sold milk, calves, and culled cows, and costs from feed and rearing youngstock. Greenhouse gas emissions were computed using a life cycle approach. A dry period of 28 days reduced milk production of the herd by 3.0% in years 2 through 5, compared with a dry period of 56 days. A dry period of 0 days reduced milk production by 3.5% in years 3 through 5, after a dip in milk production of 6.9% in year 2. On average, dry periods of 28 and 0 days reduced partial cash flows by €1,249 and €1,632 per herd per year, and increased greenhouse gas emissions by 0.7% and 0.5%, respectively. Considering the potential for enhancing cow welfare, these negative impacts of shortening or omitting the dry period seem justifiable, and they might even be offset by improved health.


Subject(s)
Dairying , Economics , Greenhouse Gases , Models, Theoretical , Stochastic Processes , Animals , Cattle
9.
Proc Natl Acad Sci U S A ; 114(39): 10473-10478, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28900010

ABSTRACT

Perception can be described as a process of inference, integrating bottom-up sensory inputs and top-down expectations. However, it is unclear how this process is neurally implemented. It has been proposed that expectations lead to prestimulus baseline increases in sensory neurons tuned to the expected stimulus, which in turn, affect the processing of subsequent stimuli. Recent fMRI studies have revealed stimulus-specific patterns of activation in sensory cortex as a result of expectation, but this method lacks the temporal resolution necessary to distinguish pre- from poststimulus processes. Here, we combined human magnetoencephalography (MEG) with multivariate decoding techniques to probe the representational content of neural signals in a time-resolved manner. We observed a representation of expected stimuli in the neural signal shortly before they were presented, showing that expectations indeed induce a preactivation of stimulus templates. The strength of these prestimulus expectation templates correlated with participants' behavioral improvement when the expected feature was task-relevant. These results suggest a mechanism for how predictive perception can be neurally implemented.


Subject(s)
Somatosensory Cortex/physiology , Visual Cortex/physiology , Visual Perception/physiology , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Male , Photic Stimulation
10.
Curr Biol ; 27(4): 590-595, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28162897

ABSTRACT

Recent studies claim that visual perception of stimulus features, such as orientation, numerosity, and faces, is systematically biased toward visual input from the immediate past [1-3]. However, the extent to which these positive biases truly reflect changes in perception rather than changes in post-perceptual processes is unclear [4, 5]. In the current study we sought to disentangle perceptual and decisional biases in visual perception. We found that post-perceptual decisions about orientation were indeed systematically biased toward previous stimuli and this positive bias did not strongly depend on the spatial location of previous stimuli (replicating previous work [1]). In contrast, observers' perception was repelled away from previous stimuli, particularly when previous stimuli were presented at the same spatial location. This repulsive effect resembles the well-known negative tilt-aftereffect in orientation perception [6]. Moreover, we found that the magnitude of the positive decisional bias increased when a longer interval was imposed between perception and decision, suggesting a shift of working memory representations toward the recent history as a source of the decisional bias. We conclude that positive aftereffects on perceptual choice are likely introduced at a post-perceptual stage. Conversely, perception is negatively biased away from recent visual input. We speculate that these opposite effects on perception and post-perceptual decision may derive from the distinct goals of perception and decision-making processes: whereas perception may be optimized for detecting changes in the environment, decision processes may integrate over longer time periods to form stable representations.


Subject(s)
Decision Making , Orientation, Spatial , Visual Perception , Adult , Female , Humans , Male , Time Factors , Young Adult
11.
Sci Rep ; 5: 18253, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26666393

ABSTRACT

A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.


Subject(s)
Brain/physiology , Decision Making , Perception , Adult , Female , Healthy Volunteers , Humans , Magnetoencephalography , Male , Photic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...