Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 15(1): 326-337, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38086683

ABSTRACT

(-)-Epicatechin (EC) consumption is associated with an improvement of hyperlipemia and other metabolic changes linked to obesity and western-style diets. This work investigated the effects of EC on triglyceride (TG) metabolism both in vivo, where mice were supplemented with EC (2 and 20 mg EC per kg body weight), and in vitro, when human HepG2 hepatocytes were incubated in the presence of EC and the main EC metabolites found in human plasma. Increased hepatic TG levels were only observed after 24 weeks supplementation with EC (20 mg per kg body weight), with a preserved liver structure and absence of inflammation or oxidative stress. EC caused increased expression of diacylglycerol acyltransferases (DGAT2), key enzymes in TG synthesis, and the upregulation of PPARα, which promotes free fatty acid (FFA) oxidation. On the other hand, incubation of HepG2 cells in the presence of high concentrations of EC (1-10 µM) did not affect TG deposition nor DGAT2 expression. In summary, in mouse liver, EC upregulated mechanisms that can neutralize the potential toxicity of FFA, i.e. TG synthesis and FFA ß-oxidation. Results in mouse liver and HepG2 cells stress the safety of EC in terms of TG metabolism and development of hepatopathies in doses within the limits given by a rational time and dose for human consumption.


Subject(s)
Catechin , Non-alcoholic Fatty Liver Disease , Mice , Humans , Animals , Catechin/pharmacology , Catechin/metabolism , Triglycerides/metabolism , Liver/metabolism , Lipid Metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Body Weight , Fatty Acids, Nonesterified/metabolism
2.
Article in English | MEDLINE | ID: mdl-33941552

ABSTRACT

INTRODUCTION: Older age is associated with greater prevalence of hyperinsulinemia, type 2 diabetes, and fatty liver disease. These metabolic conditions and aging are bidirectionally linked to mitochondrial dysfunction and telomere attrition. Although effectively addressing these conditions is important for influencing the health and the lifespan, it is particularly challenging in older age. We reported that E4orf1, a protein derived from human adenovirus Ad36, reduces hyperinsulinemia, improves glucose clearance, and protects against hepatic steatosis in younger mice exposed to high fat diet (HFD). Here, we tested if E4orf1 will improve glycemic control, liver fat accumulation, mitochondrial integrity, and reduce telomere attrition in older mice. RESEARCH DESIGN AND METHODS: We used 9-month-old mice that inducibly expressed E4orf1 in adipose tissue and non-E4orf1 expressing control mice. Mice were maintained on a 60% (kcal) HFD for 20 weeks and glycemic control was determined by intraperitoneal glucose tolerance test at week 20. Following 20 weeks of HF-feeding, mice were sacrificed and liver tissues collected to determine the expression of aging genes using qRT-PCR based RT2 Profiler PCR array. RESULTS: Compared with the control mice, E4orf1 significantly improved glycemic control and reduced hepatic steatosis and fibrosis. Additionally, E4orf1 maintained markers of mitochondrial integrity and telomere attrition. CONCLUSION: E4orf1 has the potential to improve glycemic control in older mice, and the improvement persists even after longer term exposure. E4orf1 expression also maintains mitochondrial integrity and telomere attrition, thus delaying age-associated diseases. This provides strong evidence for therapeutic utility of E4orf1 in improving age-associated metabolic and cellular changes that occur with aging in humans.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Aging , Animals , Fatty Liver/genetics , Glucose Tolerance Test , Hypoglycemic Agents , Mice
3.
Arch Biochem Biophys ; 690: 108505, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32679195

ABSTRACT

Obesity has major adverse consequences on human health contributing to the development of, among others, insulin resistance and type 2 diabetes, cardiovascular disease, non-alcoholic fatty liver disease, altered behavior and cognition, and cancer. Changes in dietary habits and lifestyle could contribute to mitigate the development and/or progression of these pathologies. This review will discuss current evidence on the beneficial actions of the flavan-3-ol (-)-epicatechin (EC) on obesity-associated comorbidities. These benefits can be in part explained through EC's capacity to mitigate several common events underlying the development of these pathologies, including: i) high circulating levels of glucose, lipids and endotoxins; ii) chronic systemic inflammation; iii) tissue endoplasmic reticulum and oxidative stress; iv) insulin resistance; v) mitochondria dysfunction and vi) dysbiosis. The currently known underlying mechanisms and cellular targets of EC's beneficial effects are discussed. While, there is limited evidence from human studies supplementing with pure EC, other studies involving cocoa supplementation in humans, pure EC in rodents and in vitro studies, support a potential beneficial action of EC on obesity-associated comorbidities. This evidence also stresses the need of further research in the field, which would contribute to the development of human dietary strategies to mitigate the adverse consequences of obesity.


Subject(s)
Catechin/pharmacology , Obesity/drug therapy , Animals , Blood Glucose/drug effects , Cardiovascular Diseases/complications , Cardiovascular Diseases/drug therapy , Comorbidity , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Dysbiosis/metabolism , Dyslipidemias/metabolism , Endoplasmic Reticulum/metabolism , Endotoxins/metabolism , Flavonoids/pharmacology , Humans , Inflammation/metabolism , Insulin Resistance , Lipid Metabolism , Mental Disorders/complications , Mental Disorders/drug therapy , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...