Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 13(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34685265

ABSTRACT

In this study, solvogels containing (2-((2-(ethoxycarbonyl)prop-2-en-1-yl)oxy)-ethyl) phosphonic acid (ECPA) and N,N'-diethyl-1,3-bis-(acrylamido)propane (BNEAA) as the crosslinker are synthesized by UV induced crosslinking photopolymerization in various solvents. The polymerization of the ECPA monomer is monitored by the conversion of double bonds with in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The morphology of the networks is characterized by in situ photorheology, solid state NMR spectroscopy, and scanning electron microscopy (SEM) of the dried gels. It is demonstrated that the storage modulus is not only determined by the crosslinker content in the gel, but also by the solvent used for preparation. The networks turn out to be porous structures with G' being governed by a rigid, phase-separated polymer phase rather than by entropic elasticity. The external and internal pKa values of the poly(ECPA-co-BNEAA) gels were determined by titration with a specially designed method and compared to the calculated values. The polymer-immobilized phosphonic acid groups in the hydrogels induce buffering behavior into the system without using a dissolved buffer. The calcium accumulation in the gels is studied by means of a double diffusion cell filled with calcium ion-containing solutions. The successful accumulation of hydroxyapatite within the gels is shown by a combination of SEM, energy-dispersive X-ray spectroscopy (EDX) and wide-angle X-ray scattering (WAXS).

2.
Dent Mater ; 37(2): 351-358, 2021 02.
Article in English | MEDLINE | ID: mdl-33357987

ABSTRACT

OBJECTIVES: To evaluate high refractive index methacrylates as diluents for the formulation of radiopaque esthetic bulk-fill composites. METHODS: 2-(4-Cumylphenoxy)ethyl methacrylate 1, 2-(2-phenylphenoxy)ethyl methacrylate 2 and 2-[2-(2-phenylphenoxy)ethoxy]ethyl methacrylate 3 were synthesized and characterized by 1H NMR spectroscopy. The reactivity of each monomer was studied using photo-DSC. Bulk-fill composites based on monomers 1-3 were formulated. Translucency (before and after light cure) was measured using a spectrophotometer. The depth of cure and the water sorption of these materials were determined according to ISO 4049. The flexural strength and modulus of elasticity were measured using a three-point bending setup, according to ISO 4049. The shrinkage force was assessed based on a method described by Watts et al. using a universal testing machine. RESULTS: Monomers 1-3 were easily synthesized in two steps. They exhibit a low viscosity and a high refractive index (1.553-1.573). Monofunctional methacrylates 1-3 were found to be more reactive than triethylene glycol dimethacrylate (TEGDMA). Bulk-fill composites based on these monomers were successfully prepared. They exhibit a high depth of cure and excellent esthetic properties (low transparency). These composites provide higher flexural modulus as well as lower water sorption than a corresponding material based on TEGDMA. Methacrylates 1 and 3 are particularly interesting as they led to composites showing lower shrinkage force. SIGNIFICANCE: Methacrylates 1-3 are promising diluents for the formulation of highly esthetic radiopaque bulk-fill composites.


Subject(s)
Composite Resins , Refractometry , Bisphenol A-Glycidyl Methacrylate , Dental Materials , Materials Testing , Methacrylates , Polyethylene Glycols , Polymerization , Polymethacrylic Acids , Viscosity
3.
Chemistry ; 27(10): 3338-3347, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33034922

ABSTRACT

Tetraacylgermanes are known as highly efficient photoinitiators. Herein, the synthesis of mixed tetraacylgermanes 4 a-c and 6 a-e with a nonsymmetric substitution pattern is presented. Germenolates are crucial intermediates of these new synthetic protocols. The synthesized compounds show increased solubility compared with symmetrically substituted tetraacylgermanes 1 a-d. Moreover, these mixed derivatives reveal broadened n-π* absorption bands, which enhance their photoactivity. Higher absorption of these new compounds at wavelengths above 450 nm causes efficient photobleaching when using an LED emitting at 470 nm. The quantum yields are in the range of 0.15-0.57, depending on the nature of the aroyl substituents. On the basis of these properties, mixed-functionalized tetraacylgermanes serve as ideal photoinitiators in various applications, especially in those requiring high penetration depth. The synthesized compounds were characterized by elemental analysis, IR spectroscopy, NMR and CIDNP spectroscopy, UV/Vis spectroscopy, photolysis experiments, and X-ray crystallography. The CIDNP data suggest that the germyl radicals generated from the new tetraacylgermanes preferentially add to the tail of the monomer butyl acrylate. In the case of 6 a-e only the mesitoyl groups are cleaved off, whereas for 4 a-c both the mesitoyl and the aroyl group are subject to α-cleavage.

4.
Inorg Chem ; 59(20): 15204-15217, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32993291

ABSTRACT

The formation of a stable triacylgermenolate 2 as a decisive intermediate was achieved by using three pathways. The first two methods involve the reaction of KOtBu or alternatively potassium with tetraacylgermane 1 yielding 2 via one electron transfer. The mechanism involves the formation of radical anions (shown by EPR). This reaction is highly efficient and selective. The third method is a classical salt metathesis reaction toward 2 in nearly quantitative yield. The formation of 2 was confirmed by NMR spectroscopy, UV-vis measurements, and X-ray crystallography. Germenolate 2 serves as a starting point for a wide variety of organo-germanium compounds. We demonstrate the potential of this intermediate by introducing new types of Ge-based photoinitiators 4b-4f. The UV-vis absorption spectra of 4b-4f show considerably increased band intensities due to the presence of eight or more chromophores. Moreover, compounds 4d-4f show absorption tailing up to 525 nm. The performance of these photoinitiators is demonstrated by spectroscopy (time-resolved EPR, laser flash photolysis (LFP), photobleaching (UV-vis)) and photopolymerization experiments (photo-DSC measurements).

5.
Des Monomers Polym ; 22(1): 79-90, 2019.
Article in English | MEDLINE | ID: mdl-30890902

ABSTRACT

The synthesis of polymerizable 7-(methacroyloxy)-2-oxo-heptylphosphonic acid M1 destined for self-etch adhesives is described. M1 is characterized by 1H, 13C and 31P-NMR spectroscopy. Its homopolymerization and copolymerization reactivity in the solvents methanol and dioxane between 45 and 70°C in the presence of azobisisobutyronitrile (AIBN) are examined. Polymerization proceeds readily through a thermal free radical initiation. The intensity exponents for the monomer and initiator are only slightly over 1 and approximately 0.5, respectively. This is in accordance with the results typically observed for an ideal free radical polymerization with termination mainly by disproportionation, which is typical for methyl methacrylate (MMA) homopolymerization. The kinetics of copolymerization with MMA are monitored by online 1H-NMR spectroscopy. Two copolymerization reactions for each pair of co-monomers are sufficient to evaluate the copolymerization parameters using the Jaacks method, the Fineman-Ross method and the nonlinear least-squares method. All three methods give similar results for particular monomer M1/MMA couple.

6.
Angew Chem Int Ed Engl ; 57(29): 9165-9169, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29729079

ABSTRACT

The formation of networks through light-initiated radical polymerization allows little freedom for tailored network design. The resulting inhomogeneous network architectures and brittle material behavior of such glassy-type networks limit the commercial application of photopolymers in 3D printing, biomedicine, and microelectronics. An ester-activated vinyl sulfonate ester (EVS) is presented for the rapid formation of tailored methacrylate-based networks. The chain transfer step induced by EVS reduces the kinetic chain length of the photopolymer, thus shifting the gel point to higher conversion, which results in reduced shrinkage stress and higher overall conversion. The resulting, more homogeneous network is responsible for the high toughness of the material. The unique property of EVS to promote nearly retardation-free polymerization can be attributed to the fact that after the transfer step no polymerizable double bond is formed, as is usually seen in classical chain transfer agents. Laser flash photolysis, theoretical calculations, and photoreactor studies were used to elucidate the fast chain transfer reaction and exceptional regulating ability of EVS. Final photopolymer networks exhibit improved mechanical performance making EVS an outstanding candidate for the 3D printing of tough photopolymers.

7.
Angew Chem Int Ed Engl ; 57(37): 12146-12150, 2018 09 10.
Article in English | MEDLINE | ID: mdl-29738630

ABSTRACT

Within this work, a novel acylstannane-based photoinitiator (PI) is presented. Tetrakis(2,4,6-trimethylbenzoyl)stannane (1) displays outstanding properties compared to state-of-the-art acylgermane-based initiators. Most importantly, the initiator shows absorption up to 550 nm, which allows higher penetration depths, especially in highly filled photopolymers. Besides that, 1 shows extremely high photoinitiating activity towards (meth)acrylic double bonds, as well as very fast photobleaching. Furthermore, unlike many organotin compounds, 1 shows surprisingly low cytotoxicity.

8.
Chemistry ; 24(33): 8281-8285, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29709089

ABSTRACT

The first tetraacylstannanes Sn[(CO)R]4 (R=2,4,6-trimethylphenyl (1 a) and 2,6-dimethylphenyl (1 b)), a class of highly efficient Sn-based photoinitiators, were synthesized. The formation of these derivatives was confirmed by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The UV/Vis absorption spectra of 1 a, b reveal a significant redshift of the longest wavelength absorption compared to the corresponding germanium compounds. In contrast to the known toxicity of organotin derivatives, the AMES test and cytotoxicity studies reveal intriguing low toxicity. The excellent performance of 1 as photoinitiators is demonstrated by photobleaching (UV/Vis) and NMR/CIDNP investigations, as well as photo-DSC studies.

9.
Photochem Photobiol Sci ; 17(5): 660-669, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29714365

ABSTRACT

We have developed a simple method for determining the quantum yields of photo-induced reactions. Our setup features a fibre coupled UV-Vis spectrometer, LED irradiation sources, and a calibrated spectrophotometer for precise measurements of the LED photon flux. The initial slope in time-resolved absorbance profiles provides the quantum yield. We show the feasibility of our methodology for the kinetic analysis of photochemical reactions and quantum yield determination. The typical chemical actinometers, ferrioxalate and ortho-nitrobenzaldehyde, as well as riboflavin, a spiro-compound, phosphorus- and germanium-based photoinitiators for radical polymerizations and the frequently utilized photo-switch azobenzene serve as paradigms. The excellent agreement of our results with published data demonstrates the high potential of the proposed method as a convenient alternative to the time-consuming chemical actinometry.

10.
ACS Macro Lett ; 7(2): 132-136, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-35610907

ABSTRACT

We introduce a method for the a priori prediction of mass spectra of complex poly(methyl methacrylate)s initiated by photoinitiators featuring multiple cleavage points. The method is based on permutation mathematics using multinomial coefficients to predict the probability of each poly(methyl methacrylate) species' isotopic pattern contribution to the overall mass spectrum. The method assumes a statistical behavior for the cleavage of the photoinitiator. The excellent agreement of the predicted mass spectrum based on multinomial coefficients with the experimental mass spectrum confirms a multipoint cleavage mechanism of the assessed photoinitiators. We exemplify our method for the prediction of mass spectra of poly(methyl methacrylate)s initiated by four tetraacylgermane derivates and one bisacylgermane, recorded after visible light pulsed-laser polymerization by high resolution Orbitrap electrospray ionization mass spectrometry (ESI-MS). The excellent agreement of our approach with experimental data suggests that a wide array of polymer mass spectra of polymers initiated by initiators capable of multiple cleavage events can be quantitatively predicted.

11.
Macromolecules ; 50(19): 7448-7457, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29033466

ABSTRACT

Photoinitiated silane-ene chemistry has the potential to pave the way toward spatially resolved organosilicon compounds, which might find application in biomedicine, microelectronics, and other advanced fields. Moreover, this approach could serve as a viable alternative to the popular photoinitiated thiol-ene chemistry, which gives access to defined and functional photopolymer networks. A difunctional bis(trimethylsilyl)silane with abstractable hydrogens (DSiH) was successfully synthesized in a simple one-pot procedure. The radical reactivity of DSiH with various homopolymerizable monomers (i.e., (meth)acrylate, vinyl ester, acrylamide) was assessed via 1H NMR spectroscopic studies. DSiH shows good reactivity with acrylates and vinyl esters. The most promising silane-acrylate system was further investigated in cross-linking formulations toward its reactivity (e.g., heat of polymerization, curing time, occurrence of gelation, double-bond conversion) and compared to state-of-the-art thiol-acrylate resins. The storage stability of prepared resin formulations is greatly improved for silane-acrylate systems vs thiol-ene resins. Double-bond conversion at the gel point (DBCgel) and overall DBC were increased, and polymerization-induced shrinkage stress has been significantly reduced with the introduction of silane-acrylate chemistry. Resulting photopolymer networks exhibit a homogeneous network architecture (indicated by a narrow glass transition) that can be tuned by varying silane concentration, and this confirms the postulated regulation of radical network formation. Similar to thiol-acrylate networks, this leads to more flexible photopolymer networks with increased elongation at break and improved impact resistance. Additionally, swelling tests indicate a high gel fraction for silane-acrylate photopolymers.

12.
Dent Mater ; 33(7): 857-865, 2017 07.
Article in English | MEDLINE | ID: mdl-28528931

ABSTRACT

OBJECTIVE: The objective of this work is to find potential alternative monomers to 2-hydroxyethyl methacrylate (HEMA) for dental materials (self-etch adhesives and luting composites). METHODS: Monomers 1-9 were tested as potential HEMA substitutes. Methacrylates 4, 5 and 6 and (N-methyl)acrylamides 7-9 were synthesized and characterized by 1H NMR spectroscopy. The reactivity of each monomer was studied using photo-DSC. Mixtures of monomers 1-9 with the urethane dimethacrylate UDMA (1/1: wt/wt) were formulated and cured. The water sorption and solubility of these materials were determined according to ISO 4049. Luting composites based on monomers 1-9 or on HEMA were formulated. The flexural strength and modulus of elasticity were measured using a three-point bending setup, according to ISO 4049. Self-etch adhesives containing monomers 1-9 or HEMA were prepared and used to mediate a bond between the dental composite Tetric EvoCeram® and both dentin and enamel. The shear bond strength (SBS) was measured using a Zwick universal testing machine. RESULTS: Polymerizable diols 3 and 4 as well as (N-methyl)acrylamides 7-9 were found to be significantly more reactive than HEMA. Resins based on the hydrophilic monomers 3, 7 and 8 exhibited a significantly higher water sorption than the corresponding HEMA-containing material. Luting composites containing monomers 2, 3, 6 and 7 showed similar or even improved mechanical properties compared to the reference material containing HEMA. Self-etch adhesives containing monomers 4 and 9 provided significantly higher dentin SBS than the reference material. SIGNIFICANCE: Some of the evaluated monomers are promising candidates for the development of HEMA-free dental materials.


Subject(s)
Dental Cements , Methacrylates , Composite Resins , Dental Bonding , Dental Materials , Dentin , Humans , Materials Testing , Stress, Mechanical , Water
13.
Angew Chem Int Ed Engl ; 56(11): 3103-3107, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28156043

ABSTRACT

In this contribution a convenient synthetic method to obtain tetraacylgermanes Ge[C(O)R]4 (R=mesityl (1 a), phenyl (1 b)), a previously unknown class of highly efficient Ge-based photoinitiators, is described. Tetraacylgermanes are easily accessible via a one-pot synthetic protocol in >85 % yield, as confirmed by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The efficiency of 1 a,b as photoinitiators is demonstrated in photobleaching (UV/Vis), time-resolved EPR (CIDEP), and NMR/CIDNP investigations as well as by photo-DSC studies. Remarkably, the tetraacylgermanes exceed the performance of currently known long-wavelength visible-light photoinitiators for free-radical polymerization.

14.
Des Monomers Polym ; 20(1): 106-117, 2017.
Article in English | MEDLINE | ID: mdl-29491784

ABSTRACT

Four polymerizable α-phosphonooxy phosphonic acids 7a, 7b, 9 and 16 were synthesized in seven steps. They were characterized by 1H, 13C and 31P NMR spectroscopy and by high-resolution mass spectroscopy. The copolymerization of acidic monomers 7a, 7b, 9 and 16 with 2-hydroxyethyl methacrylate was studied using a differential scanning calorimeter. Due to the presence of two acidic groups, those monomers are significantly more reactive than 10-methacryloyloxydecylphosphonic acid (MDPA) and 10-methacryloyloxydecyl dihydrogen phosphate (MDP). Self-etch adhesives based on monomers 7a, 7b, 9 and 16 were formulated and used to mediate a bond between a dental composite and the dental hard tissues (dentin and enamel). These adhesives exhibit excellent performances and provide significantly higher dentin and enamel shear bond strength than adhesives based on MDP or MDPA.

15.
ACS Macro Lett ; 6(1): 16-20, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-35632873

ABSTRACT

We introduce a new concept for λ-orthogonal photocurable and degradable polymer networks based on disulfone cross-linkers. The methacrylate-based monomer mixture can be cured via irradiation with visible light (400-520 nm) due to a germanium-based initiator in 10 min. Subsequently, disassembly can be induced via the UV light (350-400 nm) triggered decomposition of a photogenerated amine (PGA) that cleaves the disulfone cross-links of the network completely via a substitution reaction. For the disulfone-based cross-linking, a new dimethacrylate monomer containing the disulfone moiety is synthesized. The cleavage of the S-S bond via a nucleophilic substitution is evidenced using 5 equiv of diethylamine as a nucleophile. In order to achieve an in situ degradation, a UV-degradable PGA is prepared, and its degradation upon UV irradiation as well as its stability under visible light are demonstrated. 1H NMR spectroscopy in solution revealed a complete degradation of the disulfone in the presence of 5 equiv of the PGA. Finally, a swollen network was prepared and successfully degraded upon UV irradiation within 4 h.

16.
Adv Sci (Weinh) ; 3(3): 1500361, 2016 03.
Article in English | MEDLINE | ID: mdl-27812461

ABSTRACT

Here, the development of an adhesive is reported - generated via free radical polymerization - which can be degraded upon thermal impact within minutes. The degradation is based on a stimuli responsive moiety (SRM) that is incorporated into the network. The selected SRM is a hetero Diels-Alder (HDA) moiety that features three key properties. First, the adhesive can be degraded at relatively low temperatures (≈80 °C), second the degradation occurs very rapidly (less than 3 min), and third, the degradation of the network can readily be analyzed and quantified due to its self-reporting nature. The new reversible self-reporting adhesion system is characterized in detail starting from molecular studies of the retro HDA reaction. Moreover, the mechanical properties of the network, as well as the adhesion forces, are investigated in detail and compared to common methacrylate-based systems, demonstrating a significant decrease in mechanic stability at elevated temperatures. The current study thus represents a significant advance of the current state of the art for debonding on demand adhesives, making the system interesting for several fields of application including dental adhesives.

17.
Chemphyschem ; 17(21): 3460-3469, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27633161

ABSTRACT

In the present study, a selection of basic substitution patterns on benzoyl(trimethyl)germane was investigated using time-dependent density-functional theory (TDDFT) to explore the influence on the stability and on the relative order of the lowest excited electronic states. The theoretical results are in agreement with absorption and fluorescence measurements. We show that electron-withdrawing groups decrease the energetic level of the lowest singlet and triplet state relative to the electron-pushing systems resulting in red-shifted radiative transitions (fluorescence). In the first triplet state electron-withdrawing groups lead to an increased dissociation barrier and a close approach with the singlet ground state before the transition state in the triplet state is reached, favoring radiationless ground-state recovery. The results are also in good agreement with empirical concepts of organic chemistry, therefore providing simple rules for synthetic strategies towards tuning the excited-state properties of benzoylgermanes.

18.
ACS Appl Mater Interfaces ; 7(24): 13395-404, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26043809

ABSTRACT

Hydrogen-bonded, side-chain-functionalized supramolecular poly(alkyl methacrylate)s were investigated as light- and temperature-responsive reversible adhesives that are useful for bonding and debonding on demand applications. Here, 2-hydroxyethyl methacrylate (HEMA) was functionalized with 2-ureido-4[1H]pyrimidinone (UPy) via a hexamethylenediisocyanate (HMDI) linker, to create a monomer (UPy-HMDI-HEMA) that serves to form supramolecular cross-links by way of forming quadruple hydrogen bonded dimers. UPy-HMDI-HEMA was copolymerized with either hexyl methacrylate or butyl methacrylate to create copolymers comprising 2.5, 5, or 10 mol % of the cross-linker. The mechanical properties of all (co)polymers were investigated with stress-strain experiments and dynamic mechanical analysis. Furthermore, the adhesive properties were studied at temperatures between 20 and 60 °C by testing single lap joints formed with stainless steel substrates. It was found that increasing the concentration of the UPy-HMDI-HEMA cross-linker leads to improved mechanical and adhesive properties at elevated temperatures. Concurrently, the reversibility of the bond formation remained unaffected, where rebonded samples displayed the same adhesive strength as regularly bonded samples. Debonding on demand abilities were also tested exemplarily for one copolymer, which for light-induced debonding experiments was blended with a UV-absorber that served as light-heat converter. Single lap joints were subjected to a constant force and heated or irradiated with UV light until debonding occurred. The necessary debonding temperature was comparable for direct heating and UV irradiation and varied between 28 and 82 °C, depending on the applied force. The latter also influenced the debonding time, which under the chosen conditions ranged from 30 s to 12 min.

19.
Beilstein J Org Chem ; 10: 1733-40, 2014.
Article in English | MEDLINE | ID: mdl-25161731

ABSTRACT

Thiol-ene photopolymerizations gain a growing interest in academic research. Coatings and dental restoratives are interesting applications for thiol-ene photopolymerizations due to their unique features. In most studies the relative flexible and hydrophilic ester derivative, namely pentaerythritoltetra(3-mercaptopropionate) (PETMP), is investigated as the thiol component. Thus, in the present study we are encouraged to investigate the performance of more hydrophobic ester-free thiol-modified bis- and trisphenol derivatives in thiol-ene photopolymerizations. For this, six different thiol-modified bis- and trisphenol derivatives exhibiting four to six thiol groups are synthesized via the radical addition of thioacetic acid to suitable allyl-modified precursors and subsequent hydrolysis. Compared to PETMP better flexural strength and modulus of elasticity are achievable in thiol-ene photopolymerizations employing 1,3,5-triallyl-1,3,5-triazine-2,4,6-trione (TATATO) as the ene derivative. Especially, after storage in water, the flexural strength and modulus of elasticity is twice as high compared to the PETMP reference system.

20.
Materials (Basel) ; 7(1): 554-562, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-28788474

ABSTRACT

A cationic photo-curable cycloaliphatic epoxy resin has been investigated as reactive monomer in blue light crosslinking process. We have demonstrated that camphorquinone is able to abstract labile hydrogen from the epoxy monomer, giving rise to the formation of carbon-centered radicals that are oxidized by the onium salt; a complete epoxy group conversion was reached after 50 s of irradiation. The presence of water up to 1 wt% was tolerated without any important detrimental effect on the kinetics of light-curing. The presence of the inorganic filler up to 65 wt% did not significantly influence the curing process.

SELECTION OF CITATIONS
SEARCH DETAIL
...