Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microscopy (Oxf) ; 65(5): 451-459, 2016 10.
Article in English | MEDLINE | ID: mdl-27512015

ABSTRACT

Microparticles of radioactive cesium (Cs)-bearing silicate glass emitted from the Fukushima Daiichi nuclear power plant were investigated mainly using state-of-the-art energy-dispersive X-ray spectroscopy in scanning transmission electron microscopes. Precise elemental maps of the particles were obtained using double silicon drift detectors with a large collection angle of X-rays, and qualitative elemental analysis was performed using high-resolution X-ray spectroscopy with a microcalorimetry detector. Beside the substantial elements (O, Si, Cl, K, Fe, Zn, Rb, Sn and Cs) as previously reported, Mn and Ba were also common, though their amounts were small. The atomic ratios of the substantial elements were not the same but varied among individual particles. Fe and Zn were relatively homogeneously distributed, whereas the concentration of alkali ions varied radially. Generally, Cs was rich and K and Rb were poor outward of the particles but the degree of such radial dependence was considerably different among the particles. A concentration of Sn on the particle surface was observed. High-resolution imaging indicated the formation of SnO2 (cassiterite) nanocrystals on the surface. Synthesis of the bulk glass with a similar composition to the microparticles was attempted by quenching the silicate melt from ∼1600°C. However, homogeneous silicate glass like that of the microparticles could not be obtained due to the segregation of nano-spherules rich in Fe and Zn, suggesting that the microparticles were formed in a very specific condition in the nuclear reactor.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Glass/analysis , Radiation Monitoring , Silicates/analysis , Japan , Microscopy, Electron, Scanning Transmission , Nuclear Power Plants , Soil/chemistry , Spectrometry, X-Ray Emission
2.
Sci Rep ; 6: 21543, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26868138

ABSTRACT

Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the (137)Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 µl solution containing 0.185 ~ 1.85 Bq of (137)Cs (10(-11) ~ 10(-9 )molL(-1) of (137)Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed "weathered biotite" (WB) in this study, from Fukushima sorbed (137)Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of (137)Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed (137)Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

3.
J Struct Biol ; 180(3): 389-93, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23041294

ABSTRACT

The skeletal texture and crystal morphology of the massive reef-building coral Porites lobata were observed from the nano- to micrometer scale using an analytical transmission electron microscope (ATEM). The skeletal texture consists of centers of calcification (COCs) and fiber area. Fiber areas contain bundles of needle-like aragonite crystals that are elongated along the crystallographic c-axis and are several hundred nanometers to one micrometer in width and several micrometers in length. The size distribution of aragonite crystals is relatively homogeneous in the fibers. Growth lines are observed sub-perpendicular to the direction of aragonite growth. These growth lines occur in 1-2 µm intervals and reflect a periodic contrast in the thickness of an ion-spattered sample and pass through the interior of some aragonite crystals. These observations suggest that the medium filled in the calcification space maintains a CaCO3-supersaturated state during fiber growth and that a physical change occurs periodically during the aragonite crystals of the fiber area.


Subject(s)
Anthozoa/anatomy & histology , Calcification, Physiologic , Calcium Carbonate/chemistry , Animals , Anthozoa/growth & development , Crystallography , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...